Scalar Product of Vectors
PHXI06:WORK ENERGY AND POWER

355551 The angle between the two vectors \(\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) is

1 \(60^{\circ}\)
2 Zero
3 \(90^{\circ}\)
4 None of these
PHXI06:WORK ENERGY AND POWER

355552 If \(\hat{i}, \hat{j}\) and \(\hat{k}\) represent unit vectors along the \(x, y\) and \(z\) - axes respectively, then the angle \(\theta\) between the vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}\) is equal to

1 \(\sin ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
2 \(\sin ^{-1}\left(\sqrt{\dfrac{2}{3}}\right)\)
3 \(\cos ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355553 Vectors \(\vec{A}\) and \(\vec{B}\) include an angle \(\theta\) between them.If \((\vec{A}+\vec{B})\) and \((\vec{A}-\vec{B})\) respectively subtend angles \(\alpha\) and \(\beta\) with \(\mathrm{A}\), then \((\tan \alpha+\tan \beta)\) is

1 \(\dfrac{(A B \sin \theta)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
2 \(\dfrac{(2 A B \sin \theta)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
3 \(\dfrac{\left(A^{2} \sin ^{2} \theta\right)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
4 \(\dfrac{\left(B^{2} \sin ^{2} \theta\right)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
PHXI06:WORK ENERGY AND POWER

355554 \(\vec{A}=3 \hat{i}-\hat{j}+7 \hat{k}\) and \(\vec{B}=5 \hat{i}-\hat{j}+9 \hat{k}\). The direction cosine of the vector \(\vec{A}+\vec{B}\) with \(x\)-axis is

1 \(\dfrac{3}{\sqrt{31}}\)
2 \(\dfrac{5}{\sqrt{324}}\)
3 5
4 \(\dfrac{8}{\sqrt{324}}\)
PHXI06:WORK ENERGY AND POWER

355551 The angle between the two vectors \(\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) is

1 \(60^{\circ}\)
2 Zero
3 \(90^{\circ}\)
4 None of these
PHXI06:WORK ENERGY AND POWER

355552 If \(\hat{i}, \hat{j}\) and \(\hat{k}\) represent unit vectors along the \(x, y\) and \(z\) - axes respectively, then the angle \(\theta\) between the vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}\) is equal to

1 \(\sin ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
2 \(\sin ^{-1}\left(\sqrt{\dfrac{2}{3}}\right)\)
3 \(\cos ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355553 Vectors \(\vec{A}\) and \(\vec{B}\) include an angle \(\theta\) between them.If \((\vec{A}+\vec{B})\) and \((\vec{A}-\vec{B})\) respectively subtend angles \(\alpha\) and \(\beta\) with \(\mathrm{A}\), then \((\tan \alpha+\tan \beta)\) is

1 \(\dfrac{(A B \sin \theta)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
2 \(\dfrac{(2 A B \sin \theta)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
3 \(\dfrac{\left(A^{2} \sin ^{2} \theta\right)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
4 \(\dfrac{\left(B^{2} \sin ^{2} \theta\right)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
PHXI06:WORK ENERGY AND POWER

355554 \(\vec{A}=3 \hat{i}-\hat{j}+7 \hat{k}\) and \(\vec{B}=5 \hat{i}-\hat{j}+9 \hat{k}\). The direction cosine of the vector \(\vec{A}+\vec{B}\) with \(x\)-axis is

1 \(\dfrac{3}{\sqrt{31}}\)
2 \(\dfrac{5}{\sqrt{324}}\)
3 5
4 \(\dfrac{8}{\sqrt{324}}\)
PHXI06:WORK ENERGY AND POWER

355551 The angle between the two vectors \(\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) is

1 \(60^{\circ}\)
2 Zero
3 \(90^{\circ}\)
4 None of these
PHXI06:WORK ENERGY AND POWER

355552 If \(\hat{i}, \hat{j}\) and \(\hat{k}\) represent unit vectors along the \(x, y\) and \(z\) - axes respectively, then the angle \(\theta\) between the vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}\) is equal to

1 \(\sin ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
2 \(\sin ^{-1}\left(\sqrt{\dfrac{2}{3}}\right)\)
3 \(\cos ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355553 Vectors \(\vec{A}\) and \(\vec{B}\) include an angle \(\theta\) between them.If \((\vec{A}+\vec{B})\) and \((\vec{A}-\vec{B})\) respectively subtend angles \(\alpha\) and \(\beta\) with \(\mathrm{A}\), then \((\tan \alpha+\tan \beta)\) is

1 \(\dfrac{(A B \sin \theta)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
2 \(\dfrac{(2 A B \sin \theta)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
3 \(\dfrac{\left(A^{2} \sin ^{2} \theta\right)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
4 \(\dfrac{\left(B^{2} \sin ^{2} \theta\right)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
PHXI06:WORK ENERGY AND POWER

355554 \(\vec{A}=3 \hat{i}-\hat{j}+7 \hat{k}\) and \(\vec{B}=5 \hat{i}-\hat{j}+9 \hat{k}\). The direction cosine of the vector \(\vec{A}+\vec{B}\) with \(x\)-axis is

1 \(\dfrac{3}{\sqrt{31}}\)
2 \(\dfrac{5}{\sqrt{324}}\)
3 5
4 \(\dfrac{8}{\sqrt{324}}\)
PHXI06:WORK ENERGY AND POWER

355551 The angle between the two vectors \(\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) is

1 \(60^{\circ}\)
2 Zero
3 \(90^{\circ}\)
4 None of these
PHXI06:WORK ENERGY AND POWER

355552 If \(\hat{i}, \hat{j}\) and \(\hat{k}\) represent unit vectors along the \(x, y\) and \(z\) - axes respectively, then the angle \(\theta\) between the vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}\) is equal to

1 \(\sin ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
2 \(\sin ^{-1}\left(\sqrt{\dfrac{2}{3}}\right)\)
3 \(\cos ^{-1}\left(\dfrac{1}{\sqrt{3}}\right)\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355553 Vectors \(\vec{A}\) and \(\vec{B}\) include an angle \(\theta\) between them.If \((\vec{A}+\vec{B})\) and \((\vec{A}-\vec{B})\) respectively subtend angles \(\alpha\) and \(\beta\) with \(\mathrm{A}\), then \((\tan \alpha+\tan \beta)\) is

1 \(\dfrac{(A B \sin \theta)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
2 \(\dfrac{(2 A B \sin \theta)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
3 \(\dfrac{\left(A^{2} \sin ^{2} \theta\right)}{\left(A^{2}+B^{2} \cos ^{2} \theta\right)}\)
4 \(\dfrac{\left(B^{2} \sin ^{2} \theta\right)}{\left(A^{2}-B^{2} \cos ^{2} \theta\right)}\)
PHXI06:WORK ENERGY AND POWER

355554 \(\vec{A}=3 \hat{i}-\hat{j}+7 \hat{k}\) and \(\vec{B}=5 \hat{i}-\hat{j}+9 \hat{k}\). The direction cosine of the vector \(\vec{A}+\vec{B}\) with \(x\)-axis is

1 \(\dfrac{3}{\sqrt{31}}\)
2 \(\dfrac{5}{\sqrt{324}}\)
3 5
4 \(\dfrac{8}{\sqrt{324}}\)