Vector Product of Two Vectors
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366224 The value of \((\vec A + \vec B) \times (\vec A - \vec B)\) is

1 \(0\)
2 \({A^2} - {B^2}\)
3 \(\vec B \times \vec A\)
4 \(2(\vec B \times \vec A)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366225 The vectors from origin to the points A and B are \(\vec A = 3\hat i - 6\hat j + 2\hat k\) and \(\vec B = 2\hat i + \hat j - 2\hat k\) respectively. The area of the triangle \(OAB\) be

1 \(\frac{5}{2}\sqrt {17} \) sq.unit
2 \(\frac{2}{5}\sqrt {17} \) sq.unit
3 \(\frac{3}{5}\sqrt {17} \) sq.unit
4 \(\frac{5}{3}\sqrt {17} \) sq.unit
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366226 Two vectors \({\vec A}\) and \(\overrightarrow B \) making an angle \(\theta \) which one of the following relations is correct?

1 \(\vec A \times \vec B = \vec B \times \vec A\)
2 \(\vec A \times \vec B = AB\sin \theta \)
3 \(\vec A \times \vec B = AB\cos \theta \)
4 \(\vec A \times \vec B = - \vec B \times \vec A\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366227 \(\vec A\,\,{\rm{and}}\,\,\vec B\) are two vectors and \(\theta \) is the angle between them, if \(\left| {\vec A \times \vec B} \right| = \sqrt 3 (\vec A \cdot \vec B)\) the value of \(\theta \) is

1 \(60^\circ \)
2 \(45^\circ \)
3 \(30^\circ \)
4 \(90^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366228 If \(\vec A \times \vec B = \vec C,\) then which of the following statements is wrong?

1 \(\vec C \bot \vec A\)
2 \(\vec C \bot \vec B\)
3 \(\vec C \bot (\vec A + \vec B)\)
4 \(\vec C \bot (\vec A \times \vec B)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366224 The value of \((\vec A + \vec B) \times (\vec A - \vec B)\) is

1 \(0\)
2 \({A^2} - {B^2}\)
3 \(\vec B \times \vec A\)
4 \(2(\vec B \times \vec A)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366225 The vectors from origin to the points A and B are \(\vec A = 3\hat i - 6\hat j + 2\hat k\) and \(\vec B = 2\hat i + \hat j - 2\hat k\) respectively. The area of the triangle \(OAB\) be

1 \(\frac{5}{2}\sqrt {17} \) sq.unit
2 \(\frac{2}{5}\sqrt {17} \) sq.unit
3 \(\frac{3}{5}\sqrt {17} \) sq.unit
4 \(\frac{5}{3}\sqrt {17} \) sq.unit
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366226 Two vectors \({\vec A}\) and \(\overrightarrow B \) making an angle \(\theta \) which one of the following relations is correct?

1 \(\vec A \times \vec B = \vec B \times \vec A\)
2 \(\vec A \times \vec B = AB\sin \theta \)
3 \(\vec A \times \vec B = AB\cos \theta \)
4 \(\vec A \times \vec B = - \vec B \times \vec A\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366227 \(\vec A\,\,{\rm{and}}\,\,\vec B\) are two vectors and \(\theta \) is the angle between them, if \(\left| {\vec A \times \vec B} \right| = \sqrt 3 (\vec A \cdot \vec B)\) the value of \(\theta \) is

1 \(60^\circ \)
2 \(45^\circ \)
3 \(30^\circ \)
4 \(90^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366228 If \(\vec A \times \vec B = \vec C,\) then which of the following statements is wrong?

1 \(\vec C \bot \vec A\)
2 \(\vec C \bot \vec B\)
3 \(\vec C \bot (\vec A + \vec B)\)
4 \(\vec C \bot (\vec A \times \vec B)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366224 The value of \((\vec A + \vec B) \times (\vec A - \vec B)\) is

1 \(0\)
2 \({A^2} - {B^2}\)
3 \(\vec B \times \vec A\)
4 \(2(\vec B \times \vec A)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366225 The vectors from origin to the points A and B are \(\vec A = 3\hat i - 6\hat j + 2\hat k\) and \(\vec B = 2\hat i + \hat j - 2\hat k\) respectively. The area of the triangle \(OAB\) be

1 \(\frac{5}{2}\sqrt {17} \) sq.unit
2 \(\frac{2}{5}\sqrt {17} \) sq.unit
3 \(\frac{3}{5}\sqrt {17} \) sq.unit
4 \(\frac{5}{3}\sqrt {17} \) sq.unit
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366226 Two vectors \({\vec A}\) and \(\overrightarrow B \) making an angle \(\theta \) which one of the following relations is correct?

1 \(\vec A \times \vec B = \vec B \times \vec A\)
2 \(\vec A \times \vec B = AB\sin \theta \)
3 \(\vec A \times \vec B = AB\cos \theta \)
4 \(\vec A \times \vec B = - \vec B \times \vec A\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366227 \(\vec A\,\,{\rm{and}}\,\,\vec B\) are two vectors and \(\theta \) is the angle between them, if \(\left| {\vec A \times \vec B} \right| = \sqrt 3 (\vec A \cdot \vec B)\) the value of \(\theta \) is

1 \(60^\circ \)
2 \(45^\circ \)
3 \(30^\circ \)
4 \(90^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366228 If \(\vec A \times \vec B = \vec C,\) then which of the following statements is wrong?

1 \(\vec C \bot \vec A\)
2 \(\vec C \bot \vec B\)
3 \(\vec C \bot (\vec A + \vec B)\)
4 \(\vec C \bot (\vec A \times \vec B)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366224 The value of \((\vec A + \vec B) \times (\vec A - \vec B)\) is

1 \(0\)
2 \({A^2} - {B^2}\)
3 \(\vec B \times \vec A\)
4 \(2(\vec B \times \vec A)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366225 The vectors from origin to the points A and B are \(\vec A = 3\hat i - 6\hat j + 2\hat k\) and \(\vec B = 2\hat i + \hat j - 2\hat k\) respectively. The area of the triangle \(OAB\) be

1 \(\frac{5}{2}\sqrt {17} \) sq.unit
2 \(\frac{2}{5}\sqrt {17} \) sq.unit
3 \(\frac{3}{5}\sqrt {17} \) sq.unit
4 \(\frac{5}{3}\sqrt {17} \) sq.unit
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366226 Two vectors \({\vec A}\) and \(\overrightarrow B \) making an angle \(\theta \) which one of the following relations is correct?

1 \(\vec A \times \vec B = \vec B \times \vec A\)
2 \(\vec A \times \vec B = AB\sin \theta \)
3 \(\vec A \times \vec B = AB\cos \theta \)
4 \(\vec A \times \vec B = - \vec B \times \vec A\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366227 \(\vec A\,\,{\rm{and}}\,\,\vec B\) are two vectors and \(\theta \) is the angle between them, if \(\left| {\vec A \times \vec B} \right| = \sqrt 3 (\vec A \cdot \vec B)\) the value of \(\theta \) is

1 \(60^\circ \)
2 \(45^\circ \)
3 \(30^\circ \)
4 \(90^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366228 If \(\vec A \times \vec B = \vec C,\) then which of the following statements is wrong?

1 \(\vec C \bot \vec A\)
2 \(\vec C \bot \vec B\)
3 \(\vec C \bot (\vec A + \vec B)\)
4 \(\vec C \bot (\vec A \times \vec B)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366224 The value of \((\vec A + \vec B) \times (\vec A - \vec B)\) is

1 \(0\)
2 \({A^2} - {B^2}\)
3 \(\vec B \times \vec A\)
4 \(2(\vec B \times \vec A)\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366225 The vectors from origin to the points A and B are \(\vec A = 3\hat i - 6\hat j + 2\hat k\) and \(\vec B = 2\hat i + \hat j - 2\hat k\) respectively. The area of the triangle \(OAB\) be

1 \(\frac{5}{2}\sqrt {17} \) sq.unit
2 \(\frac{2}{5}\sqrt {17} \) sq.unit
3 \(\frac{3}{5}\sqrt {17} \) sq.unit
4 \(\frac{5}{3}\sqrt {17} \) sq.unit
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366226 Two vectors \({\vec A}\) and \(\overrightarrow B \) making an angle \(\theta \) which one of the following relations is correct?

1 \(\vec A \times \vec B = \vec B \times \vec A\)
2 \(\vec A \times \vec B = AB\sin \theta \)
3 \(\vec A \times \vec B = AB\cos \theta \)
4 \(\vec A \times \vec B = - \vec B \times \vec A\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366227 \(\vec A\,\,{\rm{and}}\,\,\vec B\) are two vectors and \(\theta \) is the angle between them, if \(\left| {\vec A \times \vec B} \right| = \sqrt 3 (\vec A \cdot \vec B)\) the value of \(\theta \) is

1 \(60^\circ \)
2 \(45^\circ \)
3 \(30^\circ \)
4 \(90^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366228 If \(\vec A \times \vec B = \vec C,\) then which of the following statements is wrong?

1 \(\vec C \bot \vec A\)
2 \(\vec C \bot \vec B\)
3 \(\vec C \bot (\vec A + \vec B)\)
4 \(\vec C \bot (\vec A \times \vec B)\)