366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is
366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is
366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is
366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is