Vector Product of Two Vectors
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366229 If the magnitudes of scalar and vector products of two vectros are 6 and \(6\sqrt 3 \) respectively, then the angle between two vectors is

1 \(30^\circ \)
2 \(15^\circ \)
3 \(75^\circ \)
4 \(60^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is

1 1
2 4
3 8
4 10
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366231 If for two vectors \(\overrightarrow A \) and \(\overrightarrow B ,\,\,\overrightarrow A \, \times \,\overrightarrow B = 0,\) the vectors

1 Are perpendicular to each other
2 Are parallel to each other
3 Axct at an angle of \(60^\circ \)
4 Act at an angle of \(30^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366232 Given, \(\overrightarrow C = \overrightarrow A \times \overrightarrow B \) and \(\overrightarrow D = \overrightarrow B \times \overrightarrow A \). What is the angle between \(\overrightarrow C \;{\rm{and}}\;\overrightarrow D \) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(180^\circ \)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366229 If the magnitudes of scalar and vector products of two vectros are 6 and \(6\sqrt 3 \) respectively, then the angle between two vectors is

1 \(30^\circ \)
2 \(15^\circ \)
3 \(75^\circ \)
4 \(60^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is

1 1
2 4
3 8
4 10
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366231 If for two vectors \(\overrightarrow A \) and \(\overrightarrow B ,\,\,\overrightarrow A \, \times \,\overrightarrow B = 0,\) the vectors

1 Are perpendicular to each other
2 Are parallel to each other
3 Axct at an angle of \(60^\circ \)
4 Act at an angle of \(30^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366232 Given, \(\overrightarrow C = \overrightarrow A \times \overrightarrow B \) and \(\overrightarrow D = \overrightarrow B \times \overrightarrow A \). What is the angle between \(\overrightarrow C \;{\rm{and}}\;\overrightarrow D \) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(180^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366229 If the magnitudes of scalar and vector products of two vectros are 6 and \(6\sqrt 3 \) respectively, then the angle between two vectors is

1 \(30^\circ \)
2 \(15^\circ \)
3 \(75^\circ \)
4 \(60^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is

1 1
2 4
3 8
4 10
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366231 If for two vectors \(\overrightarrow A \) and \(\overrightarrow B ,\,\,\overrightarrow A \, \times \,\overrightarrow B = 0,\) the vectors

1 Are perpendicular to each other
2 Are parallel to each other
3 Axct at an angle of \(60^\circ \)
4 Act at an angle of \(30^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366232 Given, \(\overrightarrow C = \overrightarrow A \times \overrightarrow B \) and \(\overrightarrow D = \overrightarrow B \times \overrightarrow A \). What is the angle between \(\overrightarrow C \;{\rm{and}}\;\overrightarrow D \) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(180^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366229 If the magnitudes of scalar and vector products of two vectros are 6 and \(6\sqrt 3 \) respectively, then the angle between two vectors is

1 \(30^\circ \)
2 \(15^\circ \)
3 \(75^\circ \)
4 \(60^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366230 If \(\vec{P}=3 \hat{i}+\sqrt{3} \hat{j}+2 \hat{k}\) and \(\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}\) then, the unit vector in the direction of \(\vec{P} \times \vec{Q}\) is \(\dfrac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})\). The value of \(x\) is

1 1
2 4
3 8
4 10
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366231 If for two vectors \(\overrightarrow A \) and \(\overrightarrow B ,\,\,\overrightarrow A \, \times \,\overrightarrow B = 0,\) the vectors

1 Are perpendicular to each other
2 Are parallel to each other
3 Axct at an angle of \(60^\circ \)
4 Act at an angle of \(30^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366232 Given, \(\overrightarrow C = \overrightarrow A \times \overrightarrow B \) and \(\overrightarrow D = \overrightarrow B \times \overrightarrow A \). What is the angle between \(\overrightarrow C \;{\rm{and}}\;\overrightarrow D \) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(180^\circ \)