Valence Bond Theory
CHXII09:COORDINATION COMPOUNDS

322290 The spin only magnetic moment of \(\left[\mathrm{MnBr}_{4}\right]^{2-}\) is 5.9 BM. The geometry of the complex ion is

1 Tetrahedral
2 Square planar
3 Pyramidal
4 Octahedral
CHXII09:COORDINATION COMPOUNDS

322291 The octahedral diamagnetic low spin complex among the following is

1 \(\left[\mathrm{NiCl}_{4}\right]^{2-}\)
2 \(\left[\mathrm{CoF}_{6}\right]^{3-}\)
3 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\)
4 \({\left[ {{\rm{CoC}}{{\rm{l}}_6}} \right]^{3 - }}\)
CHXII09:COORDINATION COMPOUNDS

322292 The geometry and magnetic behaviour of the complex \(\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]\) are

1 Square planar geometry and paramagnetic
2 Tetrahedral geometry and paramagnetic
3 Tetrahedral geometry and diamagnetic
4 Square planar geometry and diamagnetic
CHXII09:COORDINATION COMPOUNDS

322293 In the following complex ions order of paramagnetism is:
P: \({\left[ {{\text{Fe}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
Q: \({\left[ {{\text{Co}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
R: \({\left[ {{\text{V}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)
S: \({\left[ {{\text{Ti}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)

1 \(\mathrm{P}>\mathrm{Q}>\mathrm{R}>\mathrm{S}\)
2 \(\mathrm{Q}>\mathrm{P}>\mathrm{R}>\mathrm{S}\)
3 \(\mathrm{P}=\mathrm{Q}=\mathrm{R}=\mathrm{S}\)
4 \(\mathrm{P}>\mathrm{R}>\mathrm{Q}>\mathrm{S}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII09:COORDINATION COMPOUNDS

322290 The spin only magnetic moment of \(\left[\mathrm{MnBr}_{4}\right]^{2-}\) is 5.9 BM. The geometry of the complex ion is

1 Tetrahedral
2 Square planar
3 Pyramidal
4 Octahedral
CHXII09:COORDINATION COMPOUNDS

322291 The octahedral diamagnetic low spin complex among the following is

1 \(\left[\mathrm{NiCl}_{4}\right]^{2-}\)
2 \(\left[\mathrm{CoF}_{6}\right]^{3-}\)
3 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\)
4 \({\left[ {{\rm{CoC}}{{\rm{l}}_6}} \right]^{3 - }}\)
CHXII09:COORDINATION COMPOUNDS

322292 The geometry and magnetic behaviour of the complex \(\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]\) are

1 Square planar geometry and paramagnetic
2 Tetrahedral geometry and paramagnetic
3 Tetrahedral geometry and diamagnetic
4 Square planar geometry and diamagnetic
CHXII09:COORDINATION COMPOUNDS

322293 In the following complex ions order of paramagnetism is:
P: \({\left[ {{\text{Fe}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
Q: \({\left[ {{\text{Co}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
R: \({\left[ {{\text{V}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)
S: \({\left[ {{\text{Ti}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)

1 \(\mathrm{P}>\mathrm{Q}>\mathrm{R}>\mathrm{S}\)
2 \(\mathrm{Q}>\mathrm{P}>\mathrm{R}>\mathrm{S}\)
3 \(\mathrm{P}=\mathrm{Q}=\mathrm{R}=\mathrm{S}\)
4 \(\mathrm{P}>\mathrm{R}>\mathrm{Q}>\mathrm{S}\)
CHXII09:COORDINATION COMPOUNDS

322290 The spin only magnetic moment of \(\left[\mathrm{MnBr}_{4}\right]^{2-}\) is 5.9 BM. The geometry of the complex ion is

1 Tetrahedral
2 Square planar
3 Pyramidal
4 Octahedral
CHXII09:COORDINATION COMPOUNDS

322291 The octahedral diamagnetic low spin complex among the following is

1 \(\left[\mathrm{NiCl}_{4}\right]^{2-}\)
2 \(\left[\mathrm{CoF}_{6}\right]^{3-}\)
3 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\)
4 \({\left[ {{\rm{CoC}}{{\rm{l}}_6}} \right]^{3 - }}\)
CHXII09:COORDINATION COMPOUNDS

322292 The geometry and magnetic behaviour of the complex \(\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]\) are

1 Square planar geometry and paramagnetic
2 Tetrahedral geometry and paramagnetic
3 Tetrahedral geometry and diamagnetic
4 Square planar geometry and diamagnetic
CHXII09:COORDINATION COMPOUNDS

322293 In the following complex ions order of paramagnetism is:
P: \({\left[ {{\text{Fe}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
Q: \({\left[ {{\text{Co}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
R: \({\left[ {{\text{V}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)
S: \({\left[ {{\text{Ti}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)

1 \(\mathrm{P}>\mathrm{Q}>\mathrm{R}>\mathrm{S}\)
2 \(\mathrm{Q}>\mathrm{P}>\mathrm{R}>\mathrm{S}\)
3 \(\mathrm{P}=\mathrm{Q}=\mathrm{R}=\mathrm{S}\)
4 \(\mathrm{P}>\mathrm{R}>\mathrm{Q}>\mathrm{S}\)
CHXII09:COORDINATION COMPOUNDS

322290 The spin only magnetic moment of \(\left[\mathrm{MnBr}_{4}\right]^{2-}\) is 5.9 BM. The geometry of the complex ion is

1 Tetrahedral
2 Square planar
3 Pyramidal
4 Octahedral
CHXII09:COORDINATION COMPOUNDS

322291 The octahedral diamagnetic low spin complex among the following is

1 \(\left[\mathrm{NiCl}_{4}\right]^{2-}\)
2 \(\left[\mathrm{CoF}_{6}\right]^{3-}\)
3 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\)
4 \({\left[ {{\rm{CoC}}{{\rm{l}}_6}} \right]^{3 - }}\)
CHXII09:COORDINATION COMPOUNDS

322292 The geometry and magnetic behaviour of the complex \(\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]\) are

1 Square planar geometry and paramagnetic
2 Tetrahedral geometry and paramagnetic
3 Tetrahedral geometry and diamagnetic
4 Square planar geometry and diamagnetic
CHXII09:COORDINATION COMPOUNDS

322293 In the following complex ions order of paramagnetism is:
P: \({\left[ {{\text{Fe}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
Q: \({\left[ {{\text{Co}}{{\text{F}}_{\text{6}}}} \right]^{{\text{3 - }}}}\)
R: \({\left[ {{\text{V}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)
S: \({\left[ {{\text{Ti}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]^{{\text{3 + }}}}\)

1 \(\mathrm{P}>\mathrm{Q}>\mathrm{R}>\mathrm{S}\)
2 \(\mathrm{Q}>\mathrm{P}>\mathrm{R}>\mathrm{S}\)
3 \(\mathrm{P}=\mathrm{Q}=\mathrm{R}=\mathrm{S}\)
4 \(\mathrm{P}>\mathrm{R}>\mathrm{Q}>\mathrm{S}\)