Valence Bond Theory
CHXII09:COORDINATION COMPOUNDS

322281 Number of complexes from the following with even number of unpaired " \({\mathrm{d}}\) " electrons is ____.
\({\mathrm{\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}}}\), \({\mathrm{\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}}}\)
[Given atomic numbers : \({\mathrm{\mathrm{V}=23, \mathrm{Cr}=24}}\),\({\mathrm{\mathrm{Fe}=26, \mathrm{Ni}=28, \mathrm{Cu}=29]}}\)

1 5
2 2
3 1
4 4
CHXII09:COORDINATION COMPOUNDS

322282 The correct statements from following are
(I) The strength of anionic ligands can be explained by crystal field theory.
(II) Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.
(III) The hybridisation involved in formation of \({\mathrm{\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}}}\) complex is \({\mathrm{\mathrm{dsp}^{2}}}\).
(IV) The number of possible isomer(s) of \({\mathrm{\operatorname{cis}\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]^{2+}}}\) is one.
Choose the correct answer from the options given below

1 (I), (IV)only
2 (II), (III) only
3 (II), (IV)only
4 (I), (III) only
CHXII09:COORDINATION COMPOUNDS

322283 VBT can not explain the geometry of:

1 \(\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
2 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
3 \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\).
4 \(\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\)
CHXII09:COORDINATION COMPOUNDS

322284 The pair having the same magnetic moment is : [At. \(\mathrm{No}: \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27\) ]

1 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
2 \(\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
3 \(\left[\mathrm{CoCl}_{4}\right]^{2-}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
4 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{CoCl}_{4}\right]^{2-}\)
CHXII09:COORDINATION COMPOUNDS

322281 Number of complexes from the following with even number of unpaired " \({\mathrm{d}}\) " electrons is ____.
\({\mathrm{\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}}}\), \({\mathrm{\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}}}\)
[Given atomic numbers : \({\mathrm{\mathrm{V}=23, \mathrm{Cr}=24}}\),\({\mathrm{\mathrm{Fe}=26, \mathrm{Ni}=28, \mathrm{Cu}=29]}}\)

1 5
2 2
3 1
4 4
CHXII09:COORDINATION COMPOUNDS

322282 The correct statements from following are
(I) The strength of anionic ligands can be explained by crystal field theory.
(II) Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.
(III) The hybridisation involved in formation of \({\mathrm{\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}}}\) complex is \({\mathrm{\mathrm{dsp}^{2}}}\).
(IV) The number of possible isomer(s) of \({\mathrm{\operatorname{cis}\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]^{2+}}}\) is one.
Choose the correct answer from the options given below

1 (I), (IV)only
2 (II), (III) only
3 (II), (IV)only
4 (I), (III) only
CHXII09:COORDINATION COMPOUNDS

322283 VBT can not explain the geometry of:

1 \(\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
2 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
3 \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\).
4 \(\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\)
CHXII09:COORDINATION COMPOUNDS

322284 The pair having the same magnetic moment is : [At. \(\mathrm{No}: \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27\) ]

1 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
2 \(\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
3 \(\left[\mathrm{CoCl}_{4}\right]^{2-}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
4 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{CoCl}_{4}\right]^{2-}\)
CHXII09:COORDINATION COMPOUNDS

322281 Number of complexes from the following with even number of unpaired " \({\mathrm{d}}\) " electrons is ____.
\({\mathrm{\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}}}\), \({\mathrm{\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}}}\)
[Given atomic numbers : \({\mathrm{\mathrm{V}=23, \mathrm{Cr}=24}}\),\({\mathrm{\mathrm{Fe}=26, \mathrm{Ni}=28, \mathrm{Cu}=29]}}\)

1 5
2 2
3 1
4 4
CHXII09:COORDINATION COMPOUNDS

322282 The correct statements from following are
(I) The strength of anionic ligands can be explained by crystal field theory.
(II) Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.
(III) The hybridisation involved in formation of \({\mathrm{\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}}}\) complex is \({\mathrm{\mathrm{dsp}^{2}}}\).
(IV) The number of possible isomer(s) of \({\mathrm{\operatorname{cis}\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]^{2+}}}\) is one.
Choose the correct answer from the options given below

1 (I), (IV)only
2 (II), (III) only
3 (II), (IV)only
4 (I), (III) only
CHXII09:COORDINATION COMPOUNDS

322283 VBT can not explain the geometry of:

1 \(\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
2 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
3 \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\).
4 \(\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\)
CHXII09:COORDINATION COMPOUNDS

322284 The pair having the same magnetic moment is : [At. \(\mathrm{No}: \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27\) ]

1 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
2 \(\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
3 \(\left[\mathrm{CoCl}_{4}\right]^{2-}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
4 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{CoCl}_{4}\right]^{2-}\)
CHXII09:COORDINATION COMPOUNDS

322281 Number of complexes from the following with even number of unpaired " \({\mathrm{d}}\) " electrons is ____.
\({\mathrm{\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}}}\), \({\mathrm{\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}}}\)
[Given atomic numbers : \({\mathrm{\mathrm{V}=23, \mathrm{Cr}=24}}\),\({\mathrm{\mathrm{Fe}=26, \mathrm{Ni}=28, \mathrm{Cu}=29]}}\)

1 5
2 2
3 1
4 4
CHXII09:COORDINATION COMPOUNDS

322282 The correct statements from following are
(I) The strength of anionic ligands can be explained by crystal field theory.
(II) Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.
(III) The hybridisation involved in formation of \({\mathrm{\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}}}\) complex is \({\mathrm{\mathrm{dsp}^{2}}}\).
(IV) The number of possible isomer(s) of \({\mathrm{\operatorname{cis}\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]^{2+}}}\) is one.
Choose the correct answer from the options given below

1 (I), (IV)only
2 (II), (III) only
3 (II), (IV)only
4 (I), (III) only
CHXII09:COORDINATION COMPOUNDS

322283 VBT can not explain the geometry of:

1 \(\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
2 \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}\)
3 \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\).
4 \(\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}\)
CHXII09:COORDINATION COMPOUNDS

322284 The pair having the same magnetic moment is : [At. \(\mathrm{No}: \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27\) ]

1 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
2 \(\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
3 \(\left[\mathrm{CoCl}_{4}\right]^{2-}\) and \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
4 \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) and \(\left[\mathrm{CoCl}_{4}\right]^{2-}\)