Methods to Determine Order of Reaction
CHXII04:CHEMICAL KINETICS

320485 Inversion of a sugar follows first order rate equation which can be followed by noting the change in rotation of the plane of polarisation of light in the polarimeter. If \({{\rm{r}}_\infty }\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{0}}}\) are the rotations at \({\rm{t = }}\infty {\rm{,}}\,{\rm{t = t}}\,\,{\rm{and}}\,\,{\rm{t = 0}}\) then, first order reaction can be written as

1 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{lo}}{{\rm{g}}_\infty }\frac{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
2 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}\)
3 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_{\rm{0}}}}}{{{{\rm{r}}_{\rm{t}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
4 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_t}}}{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{e}}_{\rm{0}}}}}\)
CHXII04:CHEMICAL KINETICS

320486 Consider the reaction, \({\text{2A + B}} \to \) Products When concentration of \({\text{B}}\) alone was doubled, the half-life did not change. When the concentration of \({\text{A}}\) alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is:

1 No unit
2 \({\text{mol}}{\mkern 1mu} {{\text{L}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
3 \({{\text{s}}^{{\text{ - 1}}}}\)
4 \({\text{L}}{\mkern 1mu} \,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320487 If concentration of reactant 'A' is increased by 10 times the rate of reaction becomes 100 times. What is the order of reaction, if rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{x}}\) ?

1 3
2 2
3 4
4 1
CHXII04:CHEMICAL KINETICS

320488 The rate constant of reaction \({\rm{2A + B}} \to {\rm{C}}\) is \({\rm{2}}{\rm{.57 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;L\;mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after \({\rm{10}}\,{\rm{sec}}\),
\({\rm{2}}{\rm{.65 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{L}}\,\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after 20 sec and \({\rm{2}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{L}}\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}{\rm{after}}{\mkern 1mu} {\mkern 1mu} {\rm{30}}{\mkern 1mu} {\mkern 1mu} {\rm{sec}}\).
The order of the reaction is:

1 0
2 1
3 2
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII04:CHEMICAL KINETICS

320485 Inversion of a sugar follows first order rate equation which can be followed by noting the change in rotation of the plane of polarisation of light in the polarimeter. If \({{\rm{r}}_\infty }\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{0}}}\) are the rotations at \({\rm{t = }}\infty {\rm{,}}\,{\rm{t = t}}\,\,{\rm{and}}\,\,{\rm{t = 0}}\) then, first order reaction can be written as

1 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{lo}}{{\rm{g}}_\infty }\frac{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
2 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}\)
3 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_{\rm{0}}}}}{{{{\rm{r}}_{\rm{t}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
4 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_t}}}{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{e}}_{\rm{0}}}}}\)
CHXII04:CHEMICAL KINETICS

320486 Consider the reaction, \({\text{2A + B}} \to \) Products When concentration of \({\text{B}}\) alone was doubled, the half-life did not change. When the concentration of \({\text{A}}\) alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is:

1 No unit
2 \({\text{mol}}{\mkern 1mu} {{\text{L}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
3 \({{\text{s}}^{{\text{ - 1}}}}\)
4 \({\text{L}}{\mkern 1mu} \,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320487 If concentration of reactant 'A' is increased by 10 times the rate of reaction becomes 100 times. What is the order of reaction, if rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{x}}\) ?

1 3
2 2
3 4
4 1
CHXII04:CHEMICAL KINETICS

320488 The rate constant of reaction \({\rm{2A + B}} \to {\rm{C}}\) is \({\rm{2}}{\rm{.57 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;L\;mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after \({\rm{10}}\,{\rm{sec}}\),
\({\rm{2}}{\rm{.65 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{L}}\,\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after 20 sec and \({\rm{2}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{L}}\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}{\rm{after}}{\mkern 1mu} {\mkern 1mu} {\rm{30}}{\mkern 1mu} {\mkern 1mu} {\rm{sec}}\).
The order of the reaction is:

1 0
2 1
3 2
4 3
CHXII04:CHEMICAL KINETICS

320485 Inversion of a sugar follows first order rate equation which can be followed by noting the change in rotation of the plane of polarisation of light in the polarimeter. If \({{\rm{r}}_\infty }\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{0}}}\) are the rotations at \({\rm{t = }}\infty {\rm{,}}\,{\rm{t = t}}\,\,{\rm{and}}\,\,{\rm{t = 0}}\) then, first order reaction can be written as

1 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{lo}}{{\rm{g}}_\infty }\frac{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
2 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}\)
3 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_{\rm{0}}}}}{{{{\rm{r}}_{\rm{t}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
4 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_t}}}{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{e}}_{\rm{0}}}}}\)
CHXII04:CHEMICAL KINETICS

320486 Consider the reaction, \({\text{2A + B}} \to \) Products When concentration of \({\text{B}}\) alone was doubled, the half-life did not change. When the concentration of \({\text{A}}\) alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is:

1 No unit
2 \({\text{mol}}{\mkern 1mu} {{\text{L}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
3 \({{\text{s}}^{{\text{ - 1}}}}\)
4 \({\text{L}}{\mkern 1mu} \,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320487 If concentration of reactant 'A' is increased by 10 times the rate of reaction becomes 100 times. What is the order of reaction, if rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{x}}\) ?

1 3
2 2
3 4
4 1
CHXII04:CHEMICAL KINETICS

320488 The rate constant of reaction \({\rm{2A + B}} \to {\rm{C}}\) is \({\rm{2}}{\rm{.57 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;L\;mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after \({\rm{10}}\,{\rm{sec}}\),
\({\rm{2}}{\rm{.65 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{L}}\,\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after 20 sec and \({\rm{2}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{L}}\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}{\rm{after}}{\mkern 1mu} {\mkern 1mu} {\rm{30}}{\mkern 1mu} {\mkern 1mu} {\rm{sec}}\).
The order of the reaction is:

1 0
2 1
3 2
4 3
CHXII04:CHEMICAL KINETICS

320485 Inversion of a sugar follows first order rate equation which can be followed by noting the change in rotation of the plane of polarisation of light in the polarimeter. If \({{\rm{r}}_\infty }\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{0}}}\) are the rotations at \({\rm{t = }}\infty {\rm{,}}\,{\rm{t = t}}\,\,{\rm{and}}\,\,{\rm{t = 0}}\) then, first order reaction can be written as

1 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{lo}}{{\rm{g}}_\infty }\frac{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
2 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_{\rm{0}}}{\rm{ - }}{{\rm{r}}_\infty }}}{{{{\rm{r}}_t}{\rm{ - }}{{\rm{r}}_\infty }}}\)
3 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_{\rm{0}}}}}{{{{\rm{r}}_{\rm{t}}}{\rm{ - }}{{\rm{r}}_\infty }}}\)
4 \({\rm{k = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ln}}\frac{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{r}}_t}}}{{{{\rm{r}}_\infty }{\rm{ - }}{{\rm{e}}_{\rm{0}}}}}\)
CHXII04:CHEMICAL KINETICS

320486 Consider the reaction, \({\text{2A + B}} \to \) Products When concentration of \({\text{B}}\) alone was doubled, the half-life did not change. When the concentration of \({\text{A}}\) alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is:

1 No unit
2 \({\text{mol}}{\mkern 1mu} {{\text{L}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
3 \({{\text{s}}^{{\text{ - 1}}}}\)
4 \({\text{L}}{\mkern 1mu} \,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\;{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320487 If concentration of reactant 'A' is increased by 10 times the rate of reaction becomes 100 times. What is the order of reaction, if rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{x}}\) ?

1 3
2 2
3 4
4 1
CHXII04:CHEMICAL KINETICS

320488 The rate constant of reaction \({\rm{2A + B}} \to {\rm{C}}\) is \({\rm{2}}{\rm{.57 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;L\;mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after \({\rm{10}}\,{\rm{sec}}\),
\({\rm{2}}{\rm{.65 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{L}}\,\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) after 20 sec and \({\rm{2}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{L}}\,{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}{\rm{after}}{\mkern 1mu} {\mkern 1mu} {\rm{30}}{\mkern 1mu} {\mkern 1mu} {\rm{sec}}\).
The order of the reaction is:

1 0
2 1
3 2
4 3