Dependence of Rate on Temperature
CHXII04:CHEMICAL KINETICS

320261 Activation energy \(\left( {{{\rm{E}}_{\rm{a}}}} \right)\) and rate constants \({\rm{(}}{{\rm{K}}_{\rm{1}}}{\rm{)}}\) and \(\left.k_{2}\right)\) of a chemical reaction at two different temperatures \(\left( {{{\rm{T}}_{\rm{1}}}} \right)\) and \(\left( {{{\rm{T}}_{\rm{2}}}} \right)\)are related by

1 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}} \right)\)
2 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
3 \(\ln \dfrac{k_{2}}{k_{1}}=-\dfrac{E_{a}}{R}\left(\dfrac{1}{T_{1}}-\dfrac{1}{T_{2}}\right)\)
4 \({\rm{ln}}\frac{{{{\rm{k}}_{\rm{1}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
CHXII04:CHEMICAL KINETICS

320262 For a reaction \(\mathrm{E}_{\mathrm{a}}=0\) and \(\mathrm{k}=10^{5} \mathrm{~s}^{-1}\) at \(300 \mathrm{~K}\). The value of "k" at \(310 \mathrm{~K}\) would be:

1 \(10^{5}\)
2 10
3 \(10^{3}\)
4 1
CHXII04:CHEMICAL KINETICS

320263 The rate of a reaction double when its temperature changes from \(300 \mathrm{~K}\) to \(310 \mathrm{~K}\). Activation energy of such a reaction will be \(\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right.\) and \(\left.\log 2=0.301\right)\):

1 \({\rm{60}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{58}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{48}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{53}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320264 Activation energy of a chemical reaction can be determined by

1 Changing concentration of reactants
2 Evaluating rate constant at standard temperature
3 Evaluating rate constants at two different temperatures
4 Evaluating velocities of reaction at two different temperatures
CHXII04:CHEMICAL KINETICS

320261 Activation energy \(\left( {{{\rm{E}}_{\rm{a}}}} \right)\) and rate constants \({\rm{(}}{{\rm{K}}_{\rm{1}}}{\rm{)}}\) and \(\left.k_{2}\right)\) of a chemical reaction at two different temperatures \(\left( {{{\rm{T}}_{\rm{1}}}} \right)\) and \(\left( {{{\rm{T}}_{\rm{2}}}} \right)\)are related by

1 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}} \right)\)
2 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
3 \(\ln \dfrac{k_{2}}{k_{1}}=-\dfrac{E_{a}}{R}\left(\dfrac{1}{T_{1}}-\dfrac{1}{T_{2}}\right)\)
4 \({\rm{ln}}\frac{{{{\rm{k}}_{\rm{1}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
CHXII04:CHEMICAL KINETICS

320262 For a reaction \(\mathrm{E}_{\mathrm{a}}=0\) and \(\mathrm{k}=10^{5} \mathrm{~s}^{-1}\) at \(300 \mathrm{~K}\). The value of "k" at \(310 \mathrm{~K}\) would be:

1 \(10^{5}\)
2 10
3 \(10^{3}\)
4 1
CHXII04:CHEMICAL KINETICS

320263 The rate of a reaction double when its temperature changes from \(300 \mathrm{~K}\) to \(310 \mathrm{~K}\). Activation energy of such a reaction will be \(\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right.\) and \(\left.\log 2=0.301\right)\):

1 \({\rm{60}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{58}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{48}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{53}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320264 Activation energy of a chemical reaction can be determined by

1 Changing concentration of reactants
2 Evaluating rate constant at standard temperature
3 Evaluating rate constants at two different temperatures
4 Evaluating velocities of reaction at two different temperatures
CHXII04:CHEMICAL KINETICS

320261 Activation energy \(\left( {{{\rm{E}}_{\rm{a}}}} \right)\) and rate constants \({\rm{(}}{{\rm{K}}_{\rm{1}}}{\rm{)}}\) and \(\left.k_{2}\right)\) of a chemical reaction at two different temperatures \(\left( {{{\rm{T}}_{\rm{1}}}} \right)\) and \(\left( {{{\rm{T}}_{\rm{2}}}} \right)\)are related by

1 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}} \right)\)
2 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
3 \(\ln \dfrac{k_{2}}{k_{1}}=-\dfrac{E_{a}}{R}\left(\dfrac{1}{T_{1}}-\dfrac{1}{T_{2}}\right)\)
4 \({\rm{ln}}\frac{{{{\rm{k}}_{\rm{1}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
CHXII04:CHEMICAL KINETICS

320262 For a reaction \(\mathrm{E}_{\mathrm{a}}=0\) and \(\mathrm{k}=10^{5} \mathrm{~s}^{-1}\) at \(300 \mathrm{~K}\). The value of "k" at \(310 \mathrm{~K}\) would be:

1 \(10^{5}\)
2 10
3 \(10^{3}\)
4 1
CHXII04:CHEMICAL KINETICS

320263 The rate of a reaction double when its temperature changes from \(300 \mathrm{~K}\) to \(310 \mathrm{~K}\). Activation energy of such a reaction will be \(\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right.\) and \(\left.\log 2=0.301\right)\):

1 \({\rm{60}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{58}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{48}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{53}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320264 Activation energy of a chemical reaction can be determined by

1 Changing concentration of reactants
2 Evaluating rate constant at standard temperature
3 Evaluating rate constants at two different temperatures
4 Evaluating velocities of reaction at two different temperatures
CHXII04:CHEMICAL KINETICS

320261 Activation energy \(\left( {{{\rm{E}}_{\rm{a}}}} \right)\) and rate constants \({\rm{(}}{{\rm{K}}_{\rm{1}}}{\rm{)}}\) and \(\left.k_{2}\right)\) of a chemical reaction at two different temperatures \(\left( {{{\rm{T}}_{\rm{1}}}} \right)\) and \(\left( {{{\rm{T}}_{\rm{2}}}} \right)\)are related by

1 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}} \right)\)
2 \({\rm{log}}\frac{{{{\rm{k}}_{\rm{2}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
3 \(\ln \dfrac{k_{2}}{k_{1}}=-\dfrac{E_{a}}{R}\left(\dfrac{1}{T_{1}}-\dfrac{1}{T_{2}}\right)\)
4 \({\rm{ln}}\frac{{{{\rm{k}}_{\rm{1}}}}}{{{{\rm{k}}_{\rm{1}}}}}{\rm{ = - }}\frac{{{{\rm{E}}_{\rm{a}}}}}{{\rm{R}}}\left( {\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{T}}_{\rm{1}}}}}} \right)\)
CHXII04:CHEMICAL KINETICS

320262 For a reaction \(\mathrm{E}_{\mathrm{a}}=0\) and \(\mathrm{k}=10^{5} \mathrm{~s}^{-1}\) at \(300 \mathrm{~K}\). The value of "k" at \(310 \mathrm{~K}\) would be:

1 \(10^{5}\)
2 10
3 \(10^{3}\)
4 1
CHXII04:CHEMICAL KINETICS

320263 The rate of a reaction double when its temperature changes from \(300 \mathrm{~K}\) to \(310 \mathrm{~K}\). Activation energy of such a reaction will be \(\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right.\) and \(\left.\log 2=0.301\right)\):

1 \({\rm{60}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{58}}{\rm{.5\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{48}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{53}}{\rm{.6\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320264 Activation energy of a chemical reaction can be determined by

1 Changing concentration of reactants
2 Evaluating rate constant at standard temperature
3 Evaluating rate constants at two different temperatures
4 Evaluating velocities of reaction at two different temperatures