Dependence of Rate on Temperature
CHXII04:CHEMICAL KINETICS

320252 The activation energy for a simple chemical
reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is \(\mathrm{E}_{\mathrm{a}}\) in forward direction. The
activation energy for reverse reaction

1 is always less than \({{\rm{E}}_{\rm{a}}}\)
2 can be less than or more than \(\mathrm{E}_{\mathrm{a}}\)
3 is always double of \({{\rm{E}}_{\rm{a}}}\)
4 is negative of \({{\rm{E}}_{\rm{a}}}\)
CHXII04:CHEMICAL KINETICS

320253 The decomposition of\({{\text{N}}_{\text{2}}}{\text{O}}\,\,{\text{into }}{{\text{N}}_{\text{2}}}\) and in presence gaseous argon follow second order kinetics with \({\rm{k = }}\left( {{\rm{5}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{11}}}}\,{\rm{L}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}} \right){{\rm{e}}^{{\rm{ - }}\frac{{{\rm{41570}}}}{{\rm{T}}}}}{\rm{K}}\) stands for Kelvin units). The energy of activation of the reaction is

1 \(5.0 \times 10^{11} J\)
2 \(41570 \mathrm{~J}\)
3 \(5000 \mathrm{~J}\)
4 \(345612.98 \mathrm{~J}\)
CHXII04:CHEMICAL KINETICS

320254 For a reaction, the value of rate constant at 300 \(\mathrm{K}\) is \(6.0 \times 10^{5} \mathrm{~s}^{-1}\). The value of Arrhenius factor \(\mathrm{A}\), at infinitely high temperature is:

1 \(\dfrac{6 \times 10^{-5}}{300}\)
2 \(6 \times 10^{5}\)
3 \(6 \times 10^{5} \times \mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
4 \(\mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
CHXII04:CHEMICAL KINETICS

320255 A plot of \({\mathrm{\ln k}}\) versus \({\mathrm{\dfrac{1}{T}}}\) for a reaction gives the slope \({\mathrm{-2.0 \times 10^{3} \mathrm{~K}}}\). The energy of activation for the reaction is ____ \({\mathrm{\mathrm{kJ} \mathrm{mol}^{-1}}}\).

1 16.63
2 20.75
3 26.63
4 8.31
CHXII04:CHEMICAL KINETICS

320256 If for two reactions \(\mathrm{E}_{\mathrm{a}_{1}}>\mathrm{E}_{\mathrm{a}_{2}}\) and \(\mathrm{TC}_{1}\) and \(\mathrm{TC}_{2}\) are temperature coefficient respectively, then which alternative is correct?

1 \(\mathrm{TC}_{1}>\mathrm{TC}_{2}\)
2 \(\mathrm{TC}_{1} < \mathrm{TC}_{2}\)
3 \(\mathrm{TC}_{1}=\mathrm{TC}_{2}\)
4 cannot be determined
CHXII04:CHEMICAL KINETICS

320252 The activation energy for a simple chemical
reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is \(\mathrm{E}_{\mathrm{a}}\) in forward direction. The
activation energy for reverse reaction

1 is always less than \({{\rm{E}}_{\rm{a}}}\)
2 can be less than or more than \(\mathrm{E}_{\mathrm{a}}\)
3 is always double of \({{\rm{E}}_{\rm{a}}}\)
4 is negative of \({{\rm{E}}_{\rm{a}}}\)
CHXII04:CHEMICAL KINETICS

320253 The decomposition of\({{\text{N}}_{\text{2}}}{\text{O}}\,\,{\text{into }}{{\text{N}}_{\text{2}}}\) and in presence gaseous argon follow second order kinetics with \({\rm{k = }}\left( {{\rm{5}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{11}}}}\,{\rm{L}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}} \right){{\rm{e}}^{{\rm{ - }}\frac{{{\rm{41570}}}}{{\rm{T}}}}}{\rm{K}}\) stands for Kelvin units). The energy of activation of the reaction is

1 \(5.0 \times 10^{11} J\)
2 \(41570 \mathrm{~J}\)
3 \(5000 \mathrm{~J}\)
4 \(345612.98 \mathrm{~J}\)
CHXII04:CHEMICAL KINETICS

320254 For a reaction, the value of rate constant at 300 \(\mathrm{K}\) is \(6.0 \times 10^{5} \mathrm{~s}^{-1}\). The value of Arrhenius factor \(\mathrm{A}\), at infinitely high temperature is:

1 \(\dfrac{6 \times 10^{-5}}{300}\)
2 \(6 \times 10^{5}\)
3 \(6 \times 10^{5} \times \mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
4 \(\mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
CHXII04:CHEMICAL KINETICS

320255 A plot of \({\mathrm{\ln k}}\) versus \({\mathrm{\dfrac{1}{T}}}\) for a reaction gives the slope \({\mathrm{-2.0 \times 10^{3} \mathrm{~K}}}\). The energy of activation for the reaction is ____ \({\mathrm{\mathrm{kJ} \mathrm{mol}^{-1}}}\).

1 16.63
2 20.75
3 26.63
4 8.31
CHXII04:CHEMICAL KINETICS

320256 If for two reactions \(\mathrm{E}_{\mathrm{a}_{1}}>\mathrm{E}_{\mathrm{a}_{2}}\) and \(\mathrm{TC}_{1}\) and \(\mathrm{TC}_{2}\) are temperature coefficient respectively, then which alternative is correct?

1 \(\mathrm{TC}_{1}>\mathrm{TC}_{2}\)
2 \(\mathrm{TC}_{1} < \mathrm{TC}_{2}\)
3 \(\mathrm{TC}_{1}=\mathrm{TC}_{2}\)
4 cannot be determined
CHXII04:CHEMICAL KINETICS

320252 The activation energy for a simple chemical
reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is \(\mathrm{E}_{\mathrm{a}}\) in forward direction. The
activation energy for reverse reaction

1 is always less than \({{\rm{E}}_{\rm{a}}}\)
2 can be less than or more than \(\mathrm{E}_{\mathrm{a}}\)
3 is always double of \({{\rm{E}}_{\rm{a}}}\)
4 is negative of \({{\rm{E}}_{\rm{a}}}\)
CHXII04:CHEMICAL KINETICS

320253 The decomposition of\({{\text{N}}_{\text{2}}}{\text{O}}\,\,{\text{into }}{{\text{N}}_{\text{2}}}\) and in presence gaseous argon follow second order kinetics with \({\rm{k = }}\left( {{\rm{5}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{11}}}}\,{\rm{L}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}} \right){{\rm{e}}^{{\rm{ - }}\frac{{{\rm{41570}}}}{{\rm{T}}}}}{\rm{K}}\) stands for Kelvin units). The energy of activation of the reaction is

1 \(5.0 \times 10^{11} J\)
2 \(41570 \mathrm{~J}\)
3 \(5000 \mathrm{~J}\)
4 \(345612.98 \mathrm{~J}\)
CHXII04:CHEMICAL KINETICS

320254 For a reaction, the value of rate constant at 300 \(\mathrm{K}\) is \(6.0 \times 10^{5} \mathrm{~s}^{-1}\). The value of Arrhenius factor \(\mathrm{A}\), at infinitely high temperature is:

1 \(\dfrac{6 \times 10^{-5}}{300}\)
2 \(6 \times 10^{5}\)
3 \(6 \times 10^{5} \times \mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
4 \(\mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
CHXII04:CHEMICAL KINETICS

320255 A plot of \({\mathrm{\ln k}}\) versus \({\mathrm{\dfrac{1}{T}}}\) for a reaction gives the slope \({\mathrm{-2.0 \times 10^{3} \mathrm{~K}}}\). The energy of activation for the reaction is ____ \({\mathrm{\mathrm{kJ} \mathrm{mol}^{-1}}}\).

1 16.63
2 20.75
3 26.63
4 8.31
CHXII04:CHEMICAL KINETICS

320256 If for two reactions \(\mathrm{E}_{\mathrm{a}_{1}}>\mathrm{E}_{\mathrm{a}_{2}}\) and \(\mathrm{TC}_{1}\) and \(\mathrm{TC}_{2}\) are temperature coefficient respectively, then which alternative is correct?

1 \(\mathrm{TC}_{1}>\mathrm{TC}_{2}\)
2 \(\mathrm{TC}_{1} < \mathrm{TC}_{2}\)
3 \(\mathrm{TC}_{1}=\mathrm{TC}_{2}\)
4 cannot be determined
CHXII04:CHEMICAL KINETICS

320252 The activation energy for a simple chemical
reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is \(\mathrm{E}_{\mathrm{a}}\) in forward direction. The
activation energy for reverse reaction

1 is always less than \({{\rm{E}}_{\rm{a}}}\)
2 can be less than or more than \(\mathrm{E}_{\mathrm{a}}\)
3 is always double of \({{\rm{E}}_{\rm{a}}}\)
4 is negative of \({{\rm{E}}_{\rm{a}}}\)
CHXII04:CHEMICAL KINETICS

320253 The decomposition of\({{\text{N}}_{\text{2}}}{\text{O}}\,\,{\text{into }}{{\text{N}}_{\text{2}}}\) and in presence gaseous argon follow second order kinetics with \({\rm{k = }}\left( {{\rm{5}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{11}}}}\,{\rm{L}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}} \right){{\rm{e}}^{{\rm{ - }}\frac{{{\rm{41570}}}}{{\rm{T}}}}}{\rm{K}}\) stands for Kelvin units). The energy of activation of the reaction is

1 \(5.0 \times 10^{11} J\)
2 \(41570 \mathrm{~J}\)
3 \(5000 \mathrm{~J}\)
4 \(345612.98 \mathrm{~J}\)
CHXII04:CHEMICAL KINETICS

320254 For a reaction, the value of rate constant at 300 \(\mathrm{K}\) is \(6.0 \times 10^{5} \mathrm{~s}^{-1}\). The value of Arrhenius factor \(\mathrm{A}\), at infinitely high temperature is:

1 \(\dfrac{6 \times 10^{-5}}{300}\)
2 \(6 \times 10^{5}\)
3 \(6 \times 10^{5} \times \mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
4 \(\mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
CHXII04:CHEMICAL KINETICS

320255 A plot of \({\mathrm{\ln k}}\) versus \({\mathrm{\dfrac{1}{T}}}\) for a reaction gives the slope \({\mathrm{-2.0 \times 10^{3} \mathrm{~K}}}\). The energy of activation for the reaction is ____ \({\mathrm{\mathrm{kJ} \mathrm{mol}^{-1}}}\).

1 16.63
2 20.75
3 26.63
4 8.31
CHXII04:CHEMICAL KINETICS

320256 If for two reactions \(\mathrm{E}_{\mathrm{a}_{1}}>\mathrm{E}_{\mathrm{a}_{2}}\) and \(\mathrm{TC}_{1}\) and \(\mathrm{TC}_{2}\) are temperature coefficient respectively, then which alternative is correct?

1 \(\mathrm{TC}_{1}>\mathrm{TC}_{2}\)
2 \(\mathrm{TC}_{1} < \mathrm{TC}_{2}\)
3 \(\mathrm{TC}_{1}=\mathrm{TC}_{2}\)
4 cannot be determined
CHXII04:CHEMICAL KINETICS

320252 The activation energy for a simple chemical
reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is \(\mathrm{E}_{\mathrm{a}}\) in forward direction. The
activation energy for reverse reaction

1 is always less than \({{\rm{E}}_{\rm{a}}}\)
2 can be less than or more than \(\mathrm{E}_{\mathrm{a}}\)
3 is always double of \({{\rm{E}}_{\rm{a}}}\)
4 is negative of \({{\rm{E}}_{\rm{a}}}\)
CHXII04:CHEMICAL KINETICS

320253 The decomposition of\({{\text{N}}_{\text{2}}}{\text{O}}\,\,{\text{into }}{{\text{N}}_{\text{2}}}\) and in presence gaseous argon follow second order kinetics with \({\rm{k = }}\left( {{\rm{5}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{11}}}}\,{\rm{L}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}} \right){{\rm{e}}^{{\rm{ - }}\frac{{{\rm{41570}}}}{{\rm{T}}}}}{\rm{K}}\) stands for Kelvin units). The energy of activation of the reaction is

1 \(5.0 \times 10^{11} J\)
2 \(41570 \mathrm{~J}\)
3 \(5000 \mathrm{~J}\)
4 \(345612.98 \mathrm{~J}\)
CHXII04:CHEMICAL KINETICS

320254 For a reaction, the value of rate constant at 300 \(\mathrm{K}\) is \(6.0 \times 10^{5} \mathrm{~s}^{-1}\). The value of Arrhenius factor \(\mathrm{A}\), at infinitely high temperature is:

1 \(\dfrac{6 \times 10^{-5}}{300}\)
2 \(6 \times 10^{5}\)
3 \(6 \times 10^{5} \times \mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
4 \(\mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}\)
CHXII04:CHEMICAL KINETICS

320255 A plot of \({\mathrm{\ln k}}\) versus \({\mathrm{\dfrac{1}{T}}}\) for a reaction gives the slope \({\mathrm{-2.0 \times 10^{3} \mathrm{~K}}}\). The energy of activation for the reaction is ____ \({\mathrm{\mathrm{kJ} \mathrm{mol}^{-1}}}\).

1 16.63
2 20.75
3 26.63
4 8.31
CHXII04:CHEMICAL KINETICS

320256 If for two reactions \(\mathrm{E}_{\mathrm{a}_{1}}>\mathrm{E}_{\mathrm{a}_{2}}\) and \(\mathrm{TC}_{1}\) and \(\mathrm{TC}_{2}\) are temperature coefficient respectively, then which alternative is correct?

1 \(\mathrm{TC}_{1}>\mathrm{TC}_{2}\)
2 \(\mathrm{TC}_{1} < \mathrm{TC}_{2}\)
3 \(\mathrm{TC}_{1}=\mathrm{TC}_{2}\)
4 cannot be determined