320190
The rate law for a reaction between the
substances \(\mathrm{A}\) and \(\mathrm{B}\) is given by
Rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\)
On doubling the concentration of A and halving
the concentration of \(B\), the ratio of the new rate
to the earlier rate of the reaction will be as
320191
The chemical reaction \(2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}\) proceeds as
follows:
\(\mathrm{O}_{3} \xrightarrow{\text { Fast }} \mathrm{O}_{2}+\mathrm{O} ; \quad \mathrm{O}+\mathrm{O}_{3} \xrightarrow{\text { Slow }} 2 \mathrm{O}_{2}\)
the rate law expression should be
320190
The rate law for a reaction between the
substances \(\mathrm{A}\) and \(\mathrm{B}\) is given by
Rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\)
On doubling the concentration of A and halving
the concentration of \(B\), the ratio of the new rate
to the earlier rate of the reaction will be as
320191
The chemical reaction \(2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}\) proceeds as
follows:
\(\mathrm{O}_{3} \xrightarrow{\text { Fast }} \mathrm{O}_{2}+\mathrm{O} ; \quad \mathrm{O}+\mathrm{O}_{3} \xrightarrow{\text { Slow }} 2 \mathrm{O}_{2}\)
the rate law expression should be
320190
The rate law for a reaction between the
substances \(\mathrm{A}\) and \(\mathrm{B}\) is given by
Rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\)
On doubling the concentration of A and halving
the concentration of \(B\), the ratio of the new rate
to the earlier rate of the reaction will be as
320191
The chemical reaction \(2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}\) proceeds as
follows:
\(\mathrm{O}_{3} \xrightarrow{\text { Fast }} \mathrm{O}_{2}+\mathrm{O} ; \quad \mathrm{O}+\mathrm{O}_{3} \xrightarrow{\text { Slow }} 2 \mathrm{O}_{2}\)
the rate law expression should be
320190
The rate law for a reaction between the
substances \(\mathrm{A}\) and \(\mathrm{B}\) is given by
Rate \(=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\)
On doubling the concentration of A and halving
the concentration of \(B\), the ratio of the new rate
to the earlier rate of the reaction will be as
320191
The chemical reaction \(2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}\) proceeds as
follows:
\(\mathrm{O}_{3} \xrightarrow{\text { Fast }} \mathrm{O}_{2}+\mathrm{O} ; \quad \mathrm{O}+\mathrm{O}_{3} \xrightarrow{\text { Slow }} 2 \mathrm{O}_{2}\)
the rate law expression should be