Dependence of Rate on Concentration
CHXII04:CHEMICAL KINETICS

320193 For a chemical reaction rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]\). If \([\mathrm{A}]\) is doubled at constant \([\mathrm{B}]\), the rate of reaction

1 increases by a factor of 8
2 increases by a factor of 4
3 increases by a factor of 3
4 increases by a factor of 2
CHXII04:CHEMICAL KINETICS

320194 For the reaction \(2 \mathrm{~A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}\) if \(\mathrm{r}=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{0}\), then rate of reaction is

1 Inversely porportional to square of concentration of A.
2 Independent of concentration of A
3 Indepenedent of concentration of B
4 Directly proportional to concentration of B
CHXII04:CHEMICAL KINETICS

320195 The rate constant of a first order reaction is \(3 \times 10^{-6}\) per second. If the initial concentration is \(0.10 \mathrm{M}\), the initial rate of reaction is

1 \(3 \times 10^{-5} \mathrm{Ms}^{-1}\)
2 \(3 \times 10^{-6} \mathrm{Ms}^{-1}\)
3 \(3 \times 10^{-8} \mathrm{Ms}^{-1}\)
4 \(3 \times 10^{-7} \mathrm{Ms}^{-1}\)
CHXII04:CHEMICAL KINETICS

320196 For the elementary reaction \(2 \mathrm{~A} \rightarrow \mathrm{C}\), the concentration of A after 30 minutes was found to be \(0.01 \mathrm{~mole} / \mathrm{lit}\). If the rate constant of the reaction is \(2.5 \times 10^{-2}\) lit mole \(^{-1} \mathrm{sec}^{-1}\), the rate of the reaction at 30 minutes is

1 \(2.5 \times 10^{-4}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
2 \(2.5 \times 10^{-6}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
3 \(2.5 \times 10^{-2}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
4 \(2.5 \times 10^{-8}\) mole lit \({ }^{-1} \mathrm{sec}^{-1}\)
CHXII04:CHEMICAL KINETICS

320193 For a chemical reaction rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]\). If \([\mathrm{A}]\) is doubled at constant \([\mathrm{B}]\), the rate of reaction

1 increases by a factor of 8
2 increases by a factor of 4
3 increases by a factor of 3
4 increases by a factor of 2
CHXII04:CHEMICAL KINETICS

320194 For the reaction \(2 \mathrm{~A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}\) if \(\mathrm{r}=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{0}\), then rate of reaction is

1 Inversely porportional to square of concentration of A.
2 Independent of concentration of A
3 Indepenedent of concentration of B
4 Directly proportional to concentration of B
CHXII04:CHEMICAL KINETICS

320195 The rate constant of a first order reaction is \(3 \times 10^{-6}\) per second. If the initial concentration is \(0.10 \mathrm{M}\), the initial rate of reaction is

1 \(3 \times 10^{-5} \mathrm{Ms}^{-1}\)
2 \(3 \times 10^{-6} \mathrm{Ms}^{-1}\)
3 \(3 \times 10^{-8} \mathrm{Ms}^{-1}\)
4 \(3 \times 10^{-7} \mathrm{Ms}^{-1}\)
CHXII04:CHEMICAL KINETICS

320196 For the elementary reaction \(2 \mathrm{~A} \rightarrow \mathrm{C}\), the concentration of A after 30 minutes was found to be \(0.01 \mathrm{~mole} / \mathrm{lit}\). If the rate constant of the reaction is \(2.5 \times 10^{-2}\) lit mole \(^{-1} \mathrm{sec}^{-1}\), the rate of the reaction at 30 minutes is

1 \(2.5 \times 10^{-4}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
2 \(2.5 \times 10^{-6}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
3 \(2.5 \times 10^{-2}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
4 \(2.5 \times 10^{-8}\) mole lit \({ }^{-1} \mathrm{sec}^{-1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII04:CHEMICAL KINETICS

320193 For a chemical reaction rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]\). If \([\mathrm{A}]\) is doubled at constant \([\mathrm{B}]\), the rate of reaction

1 increases by a factor of 8
2 increases by a factor of 4
3 increases by a factor of 3
4 increases by a factor of 2
CHXII04:CHEMICAL KINETICS

320194 For the reaction \(2 \mathrm{~A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}\) if \(\mathrm{r}=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{0}\), then rate of reaction is

1 Inversely porportional to square of concentration of A.
2 Independent of concentration of A
3 Indepenedent of concentration of B
4 Directly proportional to concentration of B
CHXII04:CHEMICAL KINETICS

320195 The rate constant of a first order reaction is \(3 \times 10^{-6}\) per second. If the initial concentration is \(0.10 \mathrm{M}\), the initial rate of reaction is

1 \(3 \times 10^{-5} \mathrm{Ms}^{-1}\)
2 \(3 \times 10^{-6} \mathrm{Ms}^{-1}\)
3 \(3 \times 10^{-8} \mathrm{Ms}^{-1}\)
4 \(3 \times 10^{-7} \mathrm{Ms}^{-1}\)
CHXII04:CHEMICAL KINETICS

320196 For the elementary reaction \(2 \mathrm{~A} \rightarrow \mathrm{C}\), the concentration of A after 30 minutes was found to be \(0.01 \mathrm{~mole} / \mathrm{lit}\). If the rate constant of the reaction is \(2.5 \times 10^{-2}\) lit mole \(^{-1} \mathrm{sec}^{-1}\), the rate of the reaction at 30 minutes is

1 \(2.5 \times 10^{-4}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
2 \(2.5 \times 10^{-6}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
3 \(2.5 \times 10^{-2}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
4 \(2.5 \times 10^{-8}\) mole lit \({ }^{-1} \mathrm{sec}^{-1}\)
CHXII04:CHEMICAL KINETICS

320193 For a chemical reaction rate law is, rate \(=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]\). If \([\mathrm{A}]\) is doubled at constant \([\mathrm{B}]\), the rate of reaction

1 increases by a factor of 8
2 increases by a factor of 4
3 increases by a factor of 3
4 increases by a factor of 2
CHXII04:CHEMICAL KINETICS

320194 For the reaction \(2 \mathrm{~A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}\) if \(\mathrm{r}=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{0}\), then rate of reaction is

1 Inversely porportional to square of concentration of A.
2 Independent of concentration of A
3 Indepenedent of concentration of B
4 Directly proportional to concentration of B
CHXII04:CHEMICAL KINETICS

320195 The rate constant of a first order reaction is \(3 \times 10^{-6}\) per second. If the initial concentration is \(0.10 \mathrm{M}\), the initial rate of reaction is

1 \(3 \times 10^{-5} \mathrm{Ms}^{-1}\)
2 \(3 \times 10^{-6} \mathrm{Ms}^{-1}\)
3 \(3 \times 10^{-8} \mathrm{Ms}^{-1}\)
4 \(3 \times 10^{-7} \mathrm{Ms}^{-1}\)
CHXII04:CHEMICAL KINETICS

320196 For the elementary reaction \(2 \mathrm{~A} \rightarrow \mathrm{C}\), the concentration of A after 30 minutes was found to be \(0.01 \mathrm{~mole} / \mathrm{lit}\). If the rate constant of the reaction is \(2.5 \times 10^{-2}\) lit mole \(^{-1} \mathrm{sec}^{-1}\), the rate of the reaction at 30 minutes is

1 \(2.5 \times 10^{-4}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
2 \(2.5 \times 10^{-6}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
3 \(2.5 \times 10^{-2}\) mole lit \(^{-1} \mathrm{sec}^{-1}\)
4 \(2.5 \times 10^{-8}\) mole lit \({ }^{-1} \mathrm{sec}^{-1}\)