Relation between Gibbs free energy, Equilibrium constant and emf of cell
CHXII03:ELECTROCHEMISTRY

330433 Which from the following is the correct relationship between standard Gibbs energy change and standard cell potential?

1 \(-\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
2 \(\Delta \mathrm{G}^{\mathrm{o}}=\dfrac{\mathrm{E}_{\text {cell }}^{\mathrm{o}}}{\mathrm{nF}}\)
3 \(\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\Delta \mathrm{G}^{\mathrm{o}} \times \mathrm{nF}\)
4 \(\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
CHXII03:ELECTROCHEMISTRY

330434 Following two half cells form a complete cell which has \(\Delta \mathrm{G}^{\circ}\) (in \(\mathrm{kJ}\) ) value
\({\text{2}}{{\text{H}}^{\text{ + }}}{\text{ + 1/2}}{{\text{O}}_{\text{2}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {{\text{H}}_{\text{2}}}{\text{O; E}}^\circ \,{\text{ = + 1}}{\text{.23 V }}\)
\({\text{F}}{{\text{e}}^{{\text{2 + }}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {\text{Fe(s);E}}^\circ {\text{ = - 0}}{\text{.44 V}}\)

1 \(-122 \mathrm{~kJ}\)
2 \(-222 \mathrm{~kJ}\)
3 \(-322 \mathrm{~kJ}\)
4 \(-422 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330435 \(\Delta \mathrm{G}^{\circ}\) for the reaction, \(\mathrm{Cu}^{2+}+\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}\) is: [given : \(\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=+0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.44 \mathrm{~V}\) ]

1 \(11.44 \mathrm{~kJ}\)
2 \(180.8 \mathrm{~kJ}\)
3 \(150.5 \mathrm{~kJ}\)
4 \(28.5 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330436 The potential of standard hydrogen electrode is zero. This implies that

1 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
2 \({\rm{\Delta H}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
3 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) < 0\)
4 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) > 0\)
CHXII03:ELECTROCHEMISTRY

330433 Which from the following is the correct relationship between standard Gibbs energy change and standard cell potential?

1 \(-\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
2 \(\Delta \mathrm{G}^{\mathrm{o}}=\dfrac{\mathrm{E}_{\text {cell }}^{\mathrm{o}}}{\mathrm{nF}}\)
3 \(\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\Delta \mathrm{G}^{\mathrm{o}} \times \mathrm{nF}\)
4 \(\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
CHXII03:ELECTROCHEMISTRY

330434 Following two half cells form a complete cell which has \(\Delta \mathrm{G}^{\circ}\) (in \(\mathrm{kJ}\) ) value
\({\text{2}}{{\text{H}}^{\text{ + }}}{\text{ + 1/2}}{{\text{O}}_{\text{2}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {{\text{H}}_{\text{2}}}{\text{O; E}}^\circ \,{\text{ = + 1}}{\text{.23 V }}\)
\({\text{F}}{{\text{e}}^{{\text{2 + }}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {\text{Fe(s);E}}^\circ {\text{ = - 0}}{\text{.44 V}}\)

1 \(-122 \mathrm{~kJ}\)
2 \(-222 \mathrm{~kJ}\)
3 \(-322 \mathrm{~kJ}\)
4 \(-422 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330435 \(\Delta \mathrm{G}^{\circ}\) for the reaction, \(\mathrm{Cu}^{2+}+\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}\) is: [given : \(\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=+0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.44 \mathrm{~V}\) ]

1 \(11.44 \mathrm{~kJ}\)
2 \(180.8 \mathrm{~kJ}\)
3 \(150.5 \mathrm{~kJ}\)
4 \(28.5 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330436 The potential of standard hydrogen electrode is zero. This implies that

1 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
2 \({\rm{\Delta H}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
3 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) < 0\)
4 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) > 0\)
CHXII03:ELECTROCHEMISTRY

330433 Which from the following is the correct relationship between standard Gibbs energy change and standard cell potential?

1 \(-\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
2 \(\Delta \mathrm{G}^{\mathrm{o}}=\dfrac{\mathrm{E}_{\text {cell }}^{\mathrm{o}}}{\mathrm{nF}}\)
3 \(\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\Delta \mathrm{G}^{\mathrm{o}} \times \mathrm{nF}\)
4 \(\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
CHXII03:ELECTROCHEMISTRY

330434 Following two half cells form a complete cell which has \(\Delta \mathrm{G}^{\circ}\) (in \(\mathrm{kJ}\) ) value
\({\text{2}}{{\text{H}}^{\text{ + }}}{\text{ + 1/2}}{{\text{O}}_{\text{2}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {{\text{H}}_{\text{2}}}{\text{O; E}}^\circ \,{\text{ = + 1}}{\text{.23 V }}\)
\({\text{F}}{{\text{e}}^{{\text{2 + }}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {\text{Fe(s);E}}^\circ {\text{ = - 0}}{\text{.44 V}}\)

1 \(-122 \mathrm{~kJ}\)
2 \(-222 \mathrm{~kJ}\)
3 \(-322 \mathrm{~kJ}\)
4 \(-422 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330435 \(\Delta \mathrm{G}^{\circ}\) for the reaction, \(\mathrm{Cu}^{2+}+\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}\) is: [given : \(\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=+0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.44 \mathrm{~V}\) ]

1 \(11.44 \mathrm{~kJ}\)
2 \(180.8 \mathrm{~kJ}\)
3 \(150.5 \mathrm{~kJ}\)
4 \(28.5 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330436 The potential of standard hydrogen electrode is zero. This implies that

1 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
2 \({\rm{\Delta H}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
3 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) < 0\)
4 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) > 0\)
CHXII03:ELECTROCHEMISTRY

330433 Which from the following is the correct relationship between standard Gibbs energy change and standard cell potential?

1 \(-\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
2 \(\Delta \mathrm{G}^{\mathrm{o}}=\dfrac{\mathrm{E}_{\text {cell }}^{\mathrm{o}}}{\mathrm{nF}}\)
3 \(\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\Delta \mathrm{G}^{\mathrm{o}} \times \mathrm{nF}\)
4 \(\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}\)
CHXII03:ELECTROCHEMISTRY

330434 Following two half cells form a complete cell which has \(\Delta \mathrm{G}^{\circ}\) (in \(\mathrm{kJ}\) ) value
\({\text{2}}{{\text{H}}^{\text{ + }}}{\text{ + 1/2}}{{\text{O}}_{\text{2}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {{\text{H}}_{\text{2}}}{\text{O; E}}^\circ \,{\text{ = + 1}}{\text{.23 V }}\)
\({\text{F}}{{\text{e}}^{{\text{2 + }}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {\text{Fe(s);E}}^\circ {\text{ = - 0}}{\text{.44 V}}\)

1 \(-122 \mathrm{~kJ}\)
2 \(-222 \mathrm{~kJ}\)
3 \(-322 \mathrm{~kJ}\)
4 \(-422 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330435 \(\Delta \mathrm{G}^{\circ}\) for the reaction, \(\mathrm{Cu}^{2+}+\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}\) is: [given : \(\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=+0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.44 \mathrm{~V}\) ]

1 \(11.44 \mathrm{~kJ}\)
2 \(180.8 \mathrm{~kJ}\)
3 \(150.5 \mathrm{~kJ}\)
4 \(28.5 \mathrm{~kJ}\)
CHXII03:ELECTROCHEMISTRY

330436 The potential of standard hydrogen electrode is zero. This implies that

1 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
2 \({\rm{\Delta H}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) = 0\)
3 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) < 0\)
4 \({\rm{\Delta G}}_{\rm{f}}^{\rm{^\circ }}\left( {{{\rm{H}}^{\rm{ + }}}{\rm{,aq}}} \right) > 0\)