Relation between Gibbs free energy, Equilibrium constant and emf of cell
CHXII03:ELECTROCHEMISTRY

330429 For hydrogen – oxygen fuel cell at one atm and 298 K
\({H_{2(g)}} + \frac{1}{2}{O_{2(g)}} \to {H_2}{O_{(I)}};\Delta {G^o} = - 240 kJ\)
\({{\rm{E}}^{\rm{o}}}\) for the cell is approximately, (Given: F = 96,500 C)

1 2.48 V
2 1.24 V
3 2.5 V
4 1.26 V
CHXII03:ELECTROCHEMISTRY

330430 The cell reaction for the given cell is :
\(\mathrm{Pt}\left(\mathrm{H}_{2}\right) \vert \mathrm{pH}=2 \vert \mathrm{pH}=3 \vert \mathrm{Pt}\left(\mathrm{H}_{2}\right)\)
\(\mathrm{P}_{1}=1 \mathrm{~atm} \quad \mathrm{P}_{2}=1 \mathrm{~atm}\)

1 Spontaneous
2 Non-spontaneous
3 In equilibrium
4 Either of these
CHXII03:ELECTROCHEMISTRY

330431 The standard electrode potentials for
\({\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq)}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}\)
\({\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{Cu(s)}}\)
\({\rm{are}}\,\,{\rm{ + 0}}{\rm{.15}}\,\,{\rm{V}}\,\,{\rm{and}}\,\,{\rm{ + 0}}{\rm{.50}}\,\,{\rm{V}}\) respectively. The value of \({\rm{E}}_{{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{/Cu}}}^{\rm{o}}\) will be

1 0.500 V
2 0.650 V
3 0.150 V
4 0.325 V
CHXII03:ELECTROCHEMISTRY

330432 If for the cell reaction,
\(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}\);
entropy change \(\Delta {\text{S}}\) is \(96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\), then temperature coefficient of the emf of a cell is

1 \(5 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)
2 \(1 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
3 \(2 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
4 \(9.65 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330429 For hydrogen – oxygen fuel cell at one atm and 298 K
\({H_{2(g)}} + \frac{1}{2}{O_{2(g)}} \to {H_2}{O_{(I)}};\Delta {G^o} = - 240 kJ\)
\({{\rm{E}}^{\rm{o}}}\) for the cell is approximately, (Given: F = 96,500 C)

1 2.48 V
2 1.24 V
3 2.5 V
4 1.26 V
CHXII03:ELECTROCHEMISTRY

330430 The cell reaction for the given cell is :
\(\mathrm{Pt}\left(\mathrm{H}_{2}\right) \vert \mathrm{pH}=2 \vert \mathrm{pH}=3 \vert \mathrm{Pt}\left(\mathrm{H}_{2}\right)\)
\(\mathrm{P}_{1}=1 \mathrm{~atm} \quad \mathrm{P}_{2}=1 \mathrm{~atm}\)

1 Spontaneous
2 Non-spontaneous
3 In equilibrium
4 Either of these
CHXII03:ELECTROCHEMISTRY

330431 The standard electrode potentials for
\({\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq)}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}\)
\({\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{Cu(s)}}\)
\({\rm{are}}\,\,{\rm{ + 0}}{\rm{.15}}\,\,{\rm{V}}\,\,{\rm{and}}\,\,{\rm{ + 0}}{\rm{.50}}\,\,{\rm{V}}\) respectively. The value of \({\rm{E}}_{{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{/Cu}}}^{\rm{o}}\) will be

1 0.500 V
2 0.650 V
3 0.150 V
4 0.325 V
CHXII03:ELECTROCHEMISTRY

330432 If for the cell reaction,
\(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}\);
entropy change \(\Delta {\text{S}}\) is \(96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\), then temperature coefficient of the emf of a cell is

1 \(5 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)
2 \(1 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
3 \(2 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
4 \(9.65 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330429 For hydrogen – oxygen fuel cell at one atm and 298 K
\({H_{2(g)}} + \frac{1}{2}{O_{2(g)}} \to {H_2}{O_{(I)}};\Delta {G^o} = - 240 kJ\)
\({{\rm{E}}^{\rm{o}}}\) for the cell is approximately, (Given: F = 96,500 C)

1 2.48 V
2 1.24 V
3 2.5 V
4 1.26 V
CHXII03:ELECTROCHEMISTRY

330430 The cell reaction for the given cell is :
\(\mathrm{Pt}\left(\mathrm{H}_{2}\right) \vert \mathrm{pH}=2 \vert \mathrm{pH}=3 \vert \mathrm{Pt}\left(\mathrm{H}_{2}\right)\)
\(\mathrm{P}_{1}=1 \mathrm{~atm} \quad \mathrm{P}_{2}=1 \mathrm{~atm}\)

1 Spontaneous
2 Non-spontaneous
3 In equilibrium
4 Either of these
CHXII03:ELECTROCHEMISTRY

330431 The standard electrode potentials for
\({\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq)}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}\)
\({\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{Cu(s)}}\)
\({\rm{are}}\,\,{\rm{ + 0}}{\rm{.15}}\,\,{\rm{V}}\,\,{\rm{and}}\,\,{\rm{ + 0}}{\rm{.50}}\,\,{\rm{V}}\) respectively. The value of \({\rm{E}}_{{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{/Cu}}}^{\rm{o}}\) will be

1 0.500 V
2 0.650 V
3 0.150 V
4 0.325 V
CHXII03:ELECTROCHEMISTRY

330432 If for the cell reaction,
\(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}\);
entropy change \(\Delta {\text{S}}\) is \(96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\), then temperature coefficient of the emf of a cell is

1 \(5 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)
2 \(1 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
3 \(2 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
4 \(9.65 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330429 For hydrogen – oxygen fuel cell at one atm and 298 K
\({H_{2(g)}} + \frac{1}{2}{O_{2(g)}} \to {H_2}{O_{(I)}};\Delta {G^o} = - 240 kJ\)
\({{\rm{E}}^{\rm{o}}}\) for the cell is approximately, (Given: F = 96,500 C)

1 2.48 V
2 1.24 V
3 2.5 V
4 1.26 V
CHXII03:ELECTROCHEMISTRY

330430 The cell reaction for the given cell is :
\(\mathrm{Pt}\left(\mathrm{H}_{2}\right) \vert \mathrm{pH}=2 \vert \mathrm{pH}=3 \vert \mathrm{Pt}\left(\mathrm{H}_{2}\right)\)
\(\mathrm{P}_{1}=1 \mathrm{~atm} \quad \mathrm{P}_{2}=1 \mathrm{~atm}\)

1 Spontaneous
2 Non-spontaneous
3 In equilibrium
4 Either of these
CHXII03:ELECTROCHEMISTRY

330431 The standard electrode potentials for
\({\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq)}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}\)
\({\rm{C}}{{\rm{u}}^{\rm{ + }}}{\rm{(aq) + }}{{\rm{e}}^{\rm{ - }}} \to {\rm{Cu(s)}}\)
\({\rm{are}}\,\,{\rm{ + 0}}{\rm{.15}}\,\,{\rm{V}}\,\,{\rm{and}}\,\,{\rm{ + 0}}{\rm{.50}}\,\,{\rm{V}}\) respectively. The value of \({\rm{E}}_{{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{/Cu}}}^{\rm{o}}\) will be

1 0.500 V
2 0.650 V
3 0.150 V
4 0.325 V
CHXII03:ELECTROCHEMISTRY

330432 If for the cell reaction,
\(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}\);
entropy change \(\Delta {\text{S}}\) is \(96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\), then temperature coefficient of the emf of a cell is

1 \(5 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)
2 \(1 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
3 \(2 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\)
4 \(9.65 \times 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}\)