330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?
330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be
330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:
330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)
330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?
330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be
330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:
330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)
330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?
330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be
330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:
330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)
330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?
330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be
330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:
330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)
330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?
330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be
330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:
330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)