Kohlrausch Law of Independent migration of Ions and Its Applications
CHXII03:ELECTROCHEMISTRY

330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?

1 \({\rm{429}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{189}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1018}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be

1 \({\rm{130}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{65}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{260}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{187}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:

1 \({\rm{3}}{\rm{.38 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
2 \({\rm{226 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
3 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
CHXII03:ELECTROCHEMISTRY

330349 Limiting molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH,}}\,\,{\rm{i}}{\rm{.e}}{\rm{.,}}\) \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right)\)

1 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right)\)
2 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right)\)
3 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{HCl}}} \right)\)
4 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right)\)
CHXII03:ELECTROCHEMISTRY

330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)

1 350
2 280
3 30
4 315
CHXII03:ELECTROCHEMISTRY

330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?

1 \({\rm{429}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{189}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1018}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be

1 \({\rm{130}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{65}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{260}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{187}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:

1 \({\rm{3}}{\rm{.38 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
2 \({\rm{226 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
3 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
CHXII03:ELECTROCHEMISTRY

330349 Limiting molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH,}}\,\,{\rm{i}}{\rm{.e}}{\rm{.,}}\) \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right)\)

1 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right)\)
2 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right)\)
3 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{HCl}}} \right)\)
4 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right)\)
CHXII03:ELECTROCHEMISTRY

330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)

1 350
2 280
3 30
4 315
CHXII03:ELECTROCHEMISTRY

330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?

1 \({\rm{429}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{189}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1018}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be

1 \({\rm{130}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{65}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{260}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{187}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:

1 \({\rm{3}}{\rm{.38 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
2 \({\rm{226 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
3 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
CHXII03:ELECTROCHEMISTRY

330349 Limiting molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH,}}\,\,{\rm{i}}{\rm{.e}}{\rm{.,}}\) \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right)\)

1 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right)\)
2 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right)\)
3 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{HCl}}} \right)\)
4 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right)\)
CHXII03:ELECTROCHEMISTRY

330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)

1 350
2 280
3 30
4 315
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?

1 \({\rm{429}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{189}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1018}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be

1 \({\rm{130}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{65}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{260}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{187}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:

1 \({\rm{3}}{\rm{.38 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
2 \({\rm{226 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
3 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
CHXII03:ELECTROCHEMISTRY

330349 Limiting molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH,}}\,\,{\rm{i}}{\rm{.e}}{\rm{.,}}\) \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right)\)

1 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right)\)
2 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right)\)
3 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{HCl}}} \right)\)
4 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right)\)
CHXII03:ELECTROCHEMISTRY

330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)

1 350
2 280
3 30
4 315
CHXII03:ELECTROCHEMISTRY

330346 What will be the molar conductivity of \({\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}\) ions at infinite dilution if molar conductivity of \({\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}{\mkern 1mu} {\mkern 1mu} {\rm{858}}{\mkern 1mu} \,{\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and ionic conductance of \({\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}\,\,{\rm{is}}\,\,{\rm{160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) at infinite dilution ?

1 \({\rm{429}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{189}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1018}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330347 Molar ionic conductivities at infinite dilution of bivalent ions of an electrolytes \({{\rm{x}}^{{\rm{2 + }}}}\,\,{\rm{and}}\,\,{{\rm{y}}^{{\rm{2 - }}}}\) are 57 and \({\rm{73}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of the solution formed by them will be

1 \({\rm{130}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{65}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{260}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{187}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330348 Molar conductance of 0.1 M acetic acid is \({\rm{7}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). If the molar conductance of acetic acid at infinite dilution is \({\rm{380}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\), the value of dissociation constant will be:

1 \({\rm{3}}{\rm{.38 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
2 \({\rm{226 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
3 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\)
CHXII03:ELECTROCHEMISTRY

330349 Limiting molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH,}}\,\,{\rm{i}}{\rm{.e}}{\rm{.,}}\) \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right)\)

1 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right)\)
2 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right)\)
3 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{HCl}}} \right)\)
4 \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}} \right){\rm{ + \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaOH}}} \right){\rm{ - \Lambda }}_{\rm{m}}^{\rm{o}}\left( {{\rm{NaCl}}} \right)\)
CHXII03:ELECTROCHEMISTRY

330350 At \(18^{\circ} \mathrm{C}\), the conductance of \(\mathrm{H}^{+}\)and \(\mathrm{CH}_{3} \mathrm{COO}^{-}\)at infinite dilution are 315 and \(35\,{\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\) respectively. The equivalent conductivity of \(\mathrm{CH}_{3} \mathrm{COOH}\) at infinite dilution is \({\rm{mho}}\,{\rm{c}}{{\rm{m}}^2}\,{\rm{e}}{{\rm{q}}^{ - 1}}\)

1 350
2 280
3 30
4 315