Kohlrausch Law of Independent migration of Ions and Its Applications
CHXII03:ELECTROCHEMISTRY

330338 The equivalent conductivity of 0.1 M weak acid is 100 times less than that at infinite dilution. The degree of dissociation is

1 100
2 10
3 0.01
4 0.001
CHXII03:ELECTROCHEMISTRY

330339 Conductivity of 0.03 M formic acid is \({\rm{9 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation, if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for formic acid is \({\rm{410}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{8}}{\rm{.3\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{0}}{\rm{.73\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)
CHXII03:ELECTROCHEMISTRY

330340 Degree of dissociation of pure \(\mathrm{H}_{2} \mathrm{O}\) is \(1.9 \times 10^{-9}\). Molar ionic conductances of \(\mathrm{H}^{+}\)& \(\mathrm{OH}^{-}\) ions at infinite dilution are \({\text{200 S c}}{{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)
/ \({\text{350}}\,\,{\text{S c}}{{\text{m}}^{\text{2}}} {\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)respectively. Molar conductance of water is:

1 \(3.8 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
2 \(5.7 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
3 \(9.5 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
4 \(1.045 \times 10^{-6} \mathrm{Scm}^{2} \mathrm{~mol}^{-}\)
CHXII03:ELECTROCHEMISTRY

330341 At \(25^{\circ} \mathrm{C}\), the molar conductances at infinite dilution for the strong electrolytes \(\mathrm{NaOH}\), \(\mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\)and \(280 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda {^\circ _{\text{m}}}{\text{Ba}}{({\text{OH}})_2}\) in \({\text{S}}{\mkern 1mu} {{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{ - 1}}\) is

1 \(52.4 \times 10^{-4}\)
2 \(524 \times 10^{-4}\)
3 \(402 \times 10^{-4}\)
4 \(262 \times 10^{-4}\)
CHXII03:ELECTROCHEMISTRY

330338 The equivalent conductivity of 0.1 M weak acid is 100 times less than that at infinite dilution. The degree of dissociation is

1 100
2 10
3 0.01
4 0.001
CHXII03:ELECTROCHEMISTRY

330339 Conductivity of 0.03 M formic acid is \({\rm{9 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation, if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for formic acid is \({\rm{410}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{8}}{\rm{.3\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{0}}{\rm{.73\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)
CHXII03:ELECTROCHEMISTRY

330340 Degree of dissociation of pure \(\mathrm{H}_{2} \mathrm{O}\) is \(1.9 \times 10^{-9}\). Molar ionic conductances of \(\mathrm{H}^{+}\)& \(\mathrm{OH}^{-}\) ions at infinite dilution are \({\text{200 S c}}{{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)
/ \({\text{350}}\,\,{\text{S c}}{{\text{m}}^{\text{2}}} {\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)respectively. Molar conductance of water is:

1 \(3.8 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
2 \(5.7 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
3 \(9.5 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
4 \(1.045 \times 10^{-6} \mathrm{Scm}^{2} \mathrm{~mol}^{-}\)
CHXII03:ELECTROCHEMISTRY

330341 At \(25^{\circ} \mathrm{C}\), the molar conductances at infinite dilution for the strong electrolytes \(\mathrm{NaOH}\), \(\mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\)and \(280 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda {^\circ _{\text{m}}}{\text{Ba}}{({\text{OH}})_2}\) in \({\text{S}}{\mkern 1mu} {{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{ - 1}}\) is

1 \(52.4 \times 10^{-4}\)
2 \(524 \times 10^{-4}\)
3 \(402 \times 10^{-4}\)
4 \(262 \times 10^{-4}\)
CHXII03:ELECTROCHEMISTRY

330338 The equivalent conductivity of 0.1 M weak acid is 100 times less than that at infinite dilution. The degree of dissociation is

1 100
2 10
3 0.01
4 0.001
CHXII03:ELECTROCHEMISTRY

330339 Conductivity of 0.03 M formic acid is \({\rm{9 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation, if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for formic acid is \({\rm{410}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{8}}{\rm{.3\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{0}}{\rm{.73\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)
CHXII03:ELECTROCHEMISTRY

330340 Degree of dissociation of pure \(\mathrm{H}_{2} \mathrm{O}\) is \(1.9 \times 10^{-9}\). Molar ionic conductances of \(\mathrm{H}^{+}\)& \(\mathrm{OH}^{-}\) ions at infinite dilution are \({\text{200 S c}}{{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)
/ \({\text{350}}\,\,{\text{S c}}{{\text{m}}^{\text{2}}} {\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)respectively. Molar conductance of water is:

1 \(3.8 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
2 \(5.7 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
3 \(9.5 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
4 \(1.045 \times 10^{-6} \mathrm{Scm}^{2} \mathrm{~mol}^{-}\)
CHXII03:ELECTROCHEMISTRY

330341 At \(25^{\circ} \mathrm{C}\), the molar conductances at infinite dilution for the strong electrolytes \(\mathrm{NaOH}\), \(\mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\)and \(280 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda {^\circ _{\text{m}}}{\text{Ba}}{({\text{OH}})_2}\) in \({\text{S}}{\mkern 1mu} {{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{ - 1}}\) is

1 \(52.4 \times 10^{-4}\)
2 \(524 \times 10^{-4}\)
3 \(402 \times 10^{-4}\)
4 \(262 \times 10^{-4}\)
CHXII03:ELECTROCHEMISTRY

330338 The equivalent conductivity of 0.1 M weak acid is 100 times less than that at infinite dilution. The degree of dissociation is

1 100
2 10
3 0.01
4 0.001
CHXII03:ELECTROCHEMISTRY

330339 Conductivity of 0.03 M formic acid is \({\rm{9 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation, if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for formic acid is \({\rm{410}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{8}}{\rm{.3\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{0}}{\rm{.73\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)
CHXII03:ELECTROCHEMISTRY

330340 Degree of dissociation of pure \(\mathrm{H}_{2} \mathrm{O}\) is \(1.9 \times 10^{-9}\). Molar ionic conductances of \(\mathrm{H}^{+}\)& \(\mathrm{OH}^{-}\) ions at infinite dilution are \({\text{200 S c}}{{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)
/ \({\text{350}}\,\,{\text{S c}}{{\text{m}}^{\text{2}}} {\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\)respectively. Molar conductance of water is:

1 \(3.8 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
2 \(5.7 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
3 \(9.5 \times 10^{-7} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\)
4 \(1.045 \times 10^{-6} \mathrm{Scm}^{2} \mathrm{~mol}^{-}\)
CHXII03:ELECTROCHEMISTRY

330341 At \(25^{\circ} \mathrm{C}\), the molar conductances at infinite dilution for the strong electrolytes \(\mathrm{NaOH}\), \(\mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\)and \(280 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda {^\circ _{\text{m}}}{\text{Ba}}{({\text{OH}})_2}\) in \({\text{S}}{\mkern 1mu} {{\text{m}}^{\text{2}}}{\text{mo}}{{\text{l}}^{ - 1}}\) is

1 \(52.4 \times 10^{-4}\)
2 \(524 \times 10^{-4}\)
3 \(402 \times 10^{-4}\)
4 \(262 \times 10^{-4}\)