Kohlrausch Law of Independent migration of Ions and Its Applications
CHXII03:ELECTROCHEMISTRY

330334 Kohlrausch’s law sates that at:

1 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
2 Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion electrolyte
3 Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte
4 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte
CHXII03:ELECTROCHEMISTRY

330335 The \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\,\,{\rm{for}}\,\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{MgS}}{{\rm{O}}_{\rm{4}}}\), respectively by using following data
\({\rm{\Lambda }}_{{\rm{C}}{{\rm{a}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 119}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{C}}{{\rm{l}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 76}}{\rm{.3}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{\Lambda }}_{{\rm{M}}{{\rm{g}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 106}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{SO}}_{\rm{4}}^{{\rm{ - 2}}}}^{\rm{o}}{\rm{ = 160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 466, 266
2 366, 266
3 566, 271
4 271.6, 266
CHXII03:ELECTROCHEMISTRY

330336 If equivalent conductance of 1 M benzoic acid is \({\rm{12}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\) and if the conductance of benzoate ion and \({{\rm{H}}^{\rm{ + }}}\) ion are \({\rm{42}}\,\,{\rm{and}}\,\,{\rm{288}}{\rm{.42}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\), respectively then its degree of dissociation is

1 \({\rm{39\% }}\)
2 \({\rm{0}}{\rm{.039\% }}\)
3 \({\rm{0}}{\rm{.35\% }}\)
4 \({\rm{3}}{\rm{.9\% }}\)
CHXII03:ELECTROCHEMISTRY

330337 The conductivity of a saturated solution of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{is}}\,\,{\rm{3}}{\rm{.06 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) and its equivalent conductance is \({\rm{1}}{\rm{.53}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{equi}}{{\rm{v}}^{{\rm{ - 1}}}}\). The \({{\rm{K}}_{{\rm{SP}}}}\,\,{\rm{for}}\,\,{\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) will be

1 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}\)
2 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}\)
3 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\)
CHXII03:ELECTROCHEMISTRY

330334 Kohlrausch’s law sates that at:

1 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
2 Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion electrolyte
3 Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte
4 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte
CHXII03:ELECTROCHEMISTRY

330335 The \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\,\,{\rm{for}}\,\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{MgS}}{{\rm{O}}_{\rm{4}}}\), respectively by using following data
\({\rm{\Lambda }}_{{\rm{C}}{{\rm{a}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 119}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{C}}{{\rm{l}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 76}}{\rm{.3}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{\Lambda }}_{{\rm{M}}{{\rm{g}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 106}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{SO}}_{\rm{4}}^{{\rm{ - 2}}}}^{\rm{o}}{\rm{ = 160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 466, 266
2 366, 266
3 566, 271
4 271.6, 266
CHXII03:ELECTROCHEMISTRY

330336 If equivalent conductance of 1 M benzoic acid is \({\rm{12}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\) and if the conductance of benzoate ion and \({{\rm{H}}^{\rm{ + }}}\) ion are \({\rm{42}}\,\,{\rm{and}}\,\,{\rm{288}}{\rm{.42}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\), respectively then its degree of dissociation is

1 \({\rm{39\% }}\)
2 \({\rm{0}}{\rm{.039\% }}\)
3 \({\rm{0}}{\rm{.35\% }}\)
4 \({\rm{3}}{\rm{.9\% }}\)
CHXII03:ELECTROCHEMISTRY

330337 The conductivity of a saturated solution of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{is}}\,\,{\rm{3}}{\rm{.06 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) and its equivalent conductance is \({\rm{1}}{\rm{.53}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{equi}}{{\rm{v}}^{{\rm{ - 1}}}}\). The \({{\rm{K}}_{{\rm{SP}}}}\,\,{\rm{for}}\,\,{\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) will be

1 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}\)
2 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}\)
3 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\)
CHXII03:ELECTROCHEMISTRY

330334 Kohlrausch’s law sates that at:

1 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
2 Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion electrolyte
3 Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte
4 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte
CHXII03:ELECTROCHEMISTRY

330335 The \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\,\,{\rm{for}}\,\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{MgS}}{{\rm{O}}_{\rm{4}}}\), respectively by using following data
\({\rm{\Lambda }}_{{\rm{C}}{{\rm{a}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 119}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{C}}{{\rm{l}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 76}}{\rm{.3}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{\Lambda }}_{{\rm{M}}{{\rm{g}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 106}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{SO}}_{\rm{4}}^{{\rm{ - 2}}}}^{\rm{o}}{\rm{ = 160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 466, 266
2 366, 266
3 566, 271
4 271.6, 266
CHXII03:ELECTROCHEMISTRY

330336 If equivalent conductance of 1 M benzoic acid is \({\rm{12}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\) and if the conductance of benzoate ion and \({{\rm{H}}^{\rm{ + }}}\) ion are \({\rm{42}}\,\,{\rm{and}}\,\,{\rm{288}}{\rm{.42}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\), respectively then its degree of dissociation is

1 \({\rm{39\% }}\)
2 \({\rm{0}}{\rm{.039\% }}\)
3 \({\rm{0}}{\rm{.35\% }}\)
4 \({\rm{3}}{\rm{.9\% }}\)
CHXII03:ELECTROCHEMISTRY

330337 The conductivity of a saturated solution of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{is}}\,\,{\rm{3}}{\rm{.06 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) and its equivalent conductance is \({\rm{1}}{\rm{.53}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{equi}}{{\rm{v}}^{{\rm{ - 1}}}}\). The \({{\rm{K}}_{{\rm{SP}}}}\,\,{\rm{for}}\,\,{\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) will be

1 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}\)
2 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}\)
3 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330334 Kohlrausch’s law sates that at:

1 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
2 Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion electrolyte
3 Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte
4 Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte
CHXII03:ELECTROCHEMISTRY

330335 The \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\,\,{\rm{for}}\,\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{MgS}}{{\rm{O}}_{\rm{4}}}\), respectively by using following data
\({\rm{\Lambda }}_{{\rm{C}}{{\rm{a}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 119}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{C}}{{\rm{l}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 76}}{\rm{.3}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{\Lambda }}_{{\rm{M}}{{\rm{g}}^{{\rm{ + 2}}}}}^{\rm{o}}{\rm{ = 106}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{,\Lambda }}_{{\rm{SO}}_{\rm{4}}^{{\rm{ - 2}}}}^{\rm{o}}{\rm{ = 160}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 466, 266
2 366, 266
3 566, 271
4 271.6, 266
CHXII03:ELECTROCHEMISTRY

330336 If equivalent conductance of 1 M benzoic acid is \({\rm{12}}{\rm{.8}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\) and if the conductance of benzoate ion and \({{\rm{H}}^{\rm{ + }}}\) ion are \({\rm{42}}\,\,{\rm{and}}\,\,{\rm{288}}{\rm{.42}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\), respectively then its degree of dissociation is

1 \({\rm{39\% }}\)
2 \({\rm{0}}{\rm{.039\% }}\)
3 \({\rm{0}}{\rm{.35\% }}\)
4 \({\rm{3}}{\rm{.9\% }}\)
CHXII03:ELECTROCHEMISTRY

330337 The conductivity of a saturated solution of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{is}}\,\,{\rm{3}}{\rm{.06 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) and its equivalent conductance is \({\rm{1}}{\rm{.53}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{equi}}{{\rm{v}}^{{\rm{ - 1}}}}\). The \({{\rm{K}}_{{\rm{SP}}}}\,\,{\rm{for}}\,\,{\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) will be

1 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}\)
2 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}\)
3 \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\)