Kohlrausch Law of Independent migration of Ions and Its Applications
CHXII03:ELECTROCHEMISTRY

330328 If molar conductivity of \(\mathrm{Ca}^{2+}\) and \(\mathrm{Cl}^{-}\)ions are 119 and \(71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\) respectively, then the molar conductivity of \(\mathrm{CaCl}_{2}\) at infinite dilution is

1 \(215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330329 According to Kohlrausch law, the limiting value of molar conductance of an electrolyte \({{\rm{A}}_{\rm{2}}}{\rm{B}}\) is

1 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
2 \({\rm{2\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
3 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }} - {\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
4 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
CHXII03:ELECTROCHEMISTRY

330330 At Infinite dilution, each ion makes definite contribution to conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte. This law states that

1 Kohlrausch’s law
2 Debye Huckel rule
3 Faraday’s law
4 Arrhenius law
CHXII03:ELECTROCHEMISTRY

330331 The resistance of \(0.1 \mathrm{M}\) weak acid HA in a conductivity cell is \(2 \times 10^{3} \mathrm{Ohm}\). The cell constant of the cell is \(0.78 \mathrm{~cm}^{-1}\) and \(\Lambda_{\mathrm{m}}^{\circ}\) of acid HA is \(390 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\). The \(\mathrm{pH}\) of the solution is

1 5
2 3
3 3.3
4 4.2
CHXII03:ELECTROCHEMISTRY

330333 The molar conductivity of 0.007 M acetic acid is \({\rm{20}}\,\,{\rm{S}}{\rm{.c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\).
What is the dissociation constant of acetic acid ? Choose the correct option.
\[\left[ \begin{array}{l}\Lambda _{{{\rm{H}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = 350}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\\
\Lambda _{{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 50}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}
\end{array} \right]\]

1 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
2 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
3 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330328 If molar conductivity of \(\mathrm{Ca}^{2+}\) and \(\mathrm{Cl}^{-}\)ions are 119 and \(71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\) respectively, then the molar conductivity of \(\mathrm{CaCl}_{2}\) at infinite dilution is

1 \(215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330329 According to Kohlrausch law, the limiting value of molar conductance of an electrolyte \({{\rm{A}}_{\rm{2}}}{\rm{B}}\) is

1 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
2 \({\rm{2\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
3 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }} - {\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
4 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
CHXII03:ELECTROCHEMISTRY

330330 At Infinite dilution, each ion makes definite contribution to conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte. This law states that

1 Kohlrausch’s law
2 Debye Huckel rule
3 Faraday’s law
4 Arrhenius law
CHXII03:ELECTROCHEMISTRY

330331 The resistance of \(0.1 \mathrm{M}\) weak acid HA in a conductivity cell is \(2 \times 10^{3} \mathrm{Ohm}\). The cell constant of the cell is \(0.78 \mathrm{~cm}^{-1}\) and \(\Lambda_{\mathrm{m}}^{\circ}\) of acid HA is \(390 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\). The \(\mathrm{pH}\) of the solution is

1 5
2 3
3 3.3
4 4.2
CHXII03:ELECTROCHEMISTRY

330333 The molar conductivity of 0.007 M acetic acid is \({\rm{20}}\,\,{\rm{S}}{\rm{.c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\).
What is the dissociation constant of acetic acid ? Choose the correct option.
\[\left[ \begin{array}{l}\Lambda _{{{\rm{H}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = 350}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\\
\Lambda _{{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 50}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}
\end{array} \right]\]

1 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
2 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
3 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330328 If molar conductivity of \(\mathrm{Ca}^{2+}\) and \(\mathrm{Cl}^{-}\)ions are 119 and \(71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\) respectively, then the molar conductivity of \(\mathrm{CaCl}_{2}\) at infinite dilution is

1 \(215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330329 According to Kohlrausch law, the limiting value of molar conductance of an electrolyte \({{\rm{A}}_{\rm{2}}}{\rm{B}}\) is

1 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
2 \({\rm{2\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
3 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }} - {\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
4 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
CHXII03:ELECTROCHEMISTRY

330330 At Infinite dilution, each ion makes definite contribution to conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte. This law states that

1 Kohlrausch’s law
2 Debye Huckel rule
3 Faraday’s law
4 Arrhenius law
CHXII03:ELECTROCHEMISTRY

330331 The resistance of \(0.1 \mathrm{M}\) weak acid HA in a conductivity cell is \(2 \times 10^{3} \mathrm{Ohm}\). The cell constant of the cell is \(0.78 \mathrm{~cm}^{-1}\) and \(\Lambda_{\mathrm{m}}^{\circ}\) of acid HA is \(390 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\). The \(\mathrm{pH}\) of the solution is

1 5
2 3
3 3.3
4 4.2
CHXII03:ELECTROCHEMISTRY

330333 The molar conductivity of 0.007 M acetic acid is \({\rm{20}}\,\,{\rm{S}}{\rm{.c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\).
What is the dissociation constant of acetic acid ? Choose the correct option.
\[\left[ \begin{array}{l}\Lambda _{{{\rm{H}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = 350}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\\
\Lambda _{{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 50}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}
\end{array} \right]\]

1 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
2 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
3 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330328 If molar conductivity of \(\mathrm{Ca}^{2+}\) and \(\mathrm{Cl}^{-}\)ions are 119 and \(71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\) respectively, then the molar conductivity of \(\mathrm{CaCl}_{2}\) at infinite dilution is

1 \(215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330329 According to Kohlrausch law, the limiting value of molar conductance of an electrolyte \({{\rm{A}}_{\rm{2}}}{\rm{B}}\) is

1 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
2 \({\rm{2\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
3 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }} - {\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
4 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
CHXII03:ELECTROCHEMISTRY

330330 At Infinite dilution, each ion makes definite contribution to conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte. This law states that

1 Kohlrausch’s law
2 Debye Huckel rule
3 Faraday’s law
4 Arrhenius law
CHXII03:ELECTROCHEMISTRY

330331 The resistance of \(0.1 \mathrm{M}\) weak acid HA in a conductivity cell is \(2 \times 10^{3} \mathrm{Ohm}\). The cell constant of the cell is \(0.78 \mathrm{~cm}^{-1}\) and \(\Lambda_{\mathrm{m}}^{\circ}\) of acid HA is \(390 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\). The \(\mathrm{pH}\) of the solution is

1 5
2 3
3 3.3
4 4.2
CHXII03:ELECTROCHEMISTRY

330333 The molar conductivity of 0.007 M acetic acid is \({\rm{20}}\,\,{\rm{S}}{\rm{.c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\).
What is the dissociation constant of acetic acid ? Choose the correct option.
\[\left[ \begin{array}{l}\Lambda _{{{\rm{H}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = 350}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\\
\Lambda _{{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 50}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}
\end{array} \right]\]

1 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
2 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
3 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330328 If molar conductivity of \(\mathrm{Ca}^{2+}\) and \(\mathrm{Cl}^{-}\)ions are 119 and \(71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\) respectively, then the molar conductivity of \(\mathrm{CaCl}_{2}\) at infinite dilution is

1 \(215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330329 According to Kohlrausch law, the limiting value of molar conductance of an electrolyte \({{\rm{A}}_{\rm{2}}}{\rm{B}}\) is

1 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
2 \({\rm{2\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + \lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
3 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }} - {\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
4 \({\rm{\lambda }}_{{{\rm{A}}^{\rm{ + }}}}^{\rm{^\circ }}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{\lambda }}_{{{\rm{B}}^{{\rm{ - 2}}}}}^{\rm{^\circ }}\)
CHXII03:ELECTROCHEMISTRY

330330 At Infinite dilution, each ion makes definite contribution to conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte. This law states that

1 Kohlrausch’s law
2 Debye Huckel rule
3 Faraday’s law
4 Arrhenius law
CHXII03:ELECTROCHEMISTRY

330331 The resistance of \(0.1 \mathrm{M}\) weak acid HA in a conductivity cell is \(2 \times 10^{3} \mathrm{Ohm}\). The cell constant of the cell is \(0.78 \mathrm{~cm}^{-1}\) and \(\Lambda_{\mathrm{m}}^{\circ}\) of acid HA is \(390 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}\). The \(\mathrm{pH}\) of the solution is

1 5
2 3
3 3.3
4 4.2
CHXII03:ELECTROCHEMISTRY

330333 The molar conductivity of 0.007 M acetic acid is \({\rm{20}}\,\,{\rm{S}}{\rm{.c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\).
What is the dissociation constant of acetic acid ? Choose the correct option.
\[\left[ \begin{array}{l}\Lambda _{{{\rm{H}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = 350}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\\
\Lambda _{{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}}}^{\rm{o}}{\rm{ = 50}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}
\end{array} \right]\]

1 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
2 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
3 \({\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{{\rm{ - 1}}}}\)