Kohlrausch Law of Independent migration of Ions and Its Applications
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is

1 \({\rm{40}}{\rm{.800}}\,\,{\rm{\% }}\)
2 \({\rm{2}}{\rm{.080}}\,\,{\rm{\% }}\)
3 \({\rm{20}}{\rm{.800}}\,\,{\rm{\% }}\)
4 \({\rm{4}}{\rm{.008}}\,\,{\rm{\% }}\)
CHXII03:ELECTROCHEMISTRY

330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is

1 \(362 \times 10^{-4}\)
2 \(402 \times 10^{-4}\)
3 \(524 \times 10^{-4}\)
4 \(568 \times 10^{-4}\)
CHXII03:ELECTROCHEMISTRY

330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?

1 \({\rm{8}}{\rm{.94 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{8}}{\rm{.92 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{4}}{\rm{.46 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{2}}{\rm{.23 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330327 Molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}\) can be calculated by the equation,

1 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}\)
2 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{\Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)
3 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}\)
4 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)
CHXII03:ELECTROCHEMISTRY

330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is

1 \({\rm{40}}{\rm{.800}}\,\,{\rm{\% }}\)
2 \({\rm{2}}{\rm{.080}}\,\,{\rm{\% }}\)
3 \({\rm{20}}{\rm{.800}}\,\,{\rm{\% }}\)
4 \({\rm{4}}{\rm{.008}}\,\,{\rm{\% }}\)
CHXII03:ELECTROCHEMISTRY

330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is

1 \(362 \times 10^{-4}\)
2 \(402 \times 10^{-4}\)
3 \(524 \times 10^{-4}\)
4 \(568 \times 10^{-4}\)
CHXII03:ELECTROCHEMISTRY

330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?

1 \({\rm{8}}{\rm{.94 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{8}}{\rm{.92 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{4}}{\rm{.46 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{2}}{\rm{.23 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330327 Molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}\) can be calculated by the equation,

1 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}\)
2 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{\Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)
3 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}\)
4 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)
CHXII03:ELECTROCHEMISTRY

330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is

1 \({\rm{40}}{\rm{.800}}\,\,{\rm{\% }}\)
2 \({\rm{2}}{\rm{.080}}\,\,{\rm{\% }}\)
3 \({\rm{20}}{\rm{.800}}\,\,{\rm{\% }}\)
4 \({\rm{4}}{\rm{.008}}\,\,{\rm{\% }}\)
CHXII03:ELECTROCHEMISTRY

330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is

1 \(362 \times 10^{-4}\)
2 \(402 \times 10^{-4}\)
3 \(524 \times 10^{-4}\)
4 \(568 \times 10^{-4}\)
CHXII03:ELECTROCHEMISTRY

330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?

1 \({\rm{8}}{\rm{.94 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{8}}{\rm{.92 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{4}}{\rm{.46 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{2}}{\rm{.23 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330327 Molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}\) can be calculated by the equation,

1 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}\)
2 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{\Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)
3 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}\)
4 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)
CHXII03:ELECTROCHEMISTRY

330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is

1 \({\rm{40}}{\rm{.800}}\,\,{\rm{\% }}\)
2 \({\rm{2}}{\rm{.080}}\,\,{\rm{\% }}\)
3 \({\rm{20}}{\rm{.800}}\,\,{\rm{\% }}\)
4 \({\rm{4}}{\rm{.008}}\,\,{\rm{\% }}\)
CHXII03:ELECTROCHEMISTRY

330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is

1 \(362 \times 10^{-4}\)
2 \(402 \times 10^{-4}\)
3 \(524 \times 10^{-4}\)
4 \(568 \times 10^{-4}\)
CHXII03:ELECTROCHEMISTRY

330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?

1 \({\rm{8}}{\rm{.94 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{8}}{\rm{.92 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{4}}{\rm{.46 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{2}}{\rm{.23 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330327 Molar conductivity of \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}\) can be calculated by the equation,

1 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}\)
2 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{\Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)
3 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = \Lambda }}_{{\rm{BaC}}{{\rm{l}}_{\rm{2}}}}^{\rm{^\circ }}{\rm{ + 2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ - \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}\)
4 \({\rm{\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{OH}}}^{\rm{^\circ }}{\rm{ = }}\frac{{{\rm{2\Lambda }}_{{\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}}^{\rm{^\circ }}{\rm{ + \Lambda }}_{{\rm{Ba}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}^{\rm{^\circ }}}}{{\rm{2}}}\)