330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is
330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is
330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?
330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is
330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is
330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?
330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is
330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is
330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?
330322 At \({\rm{25^\circ C}}\) molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is \({\rm{9}}{\rm{.54}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and at infinite dilution its molar conductance is \({\rm{238}}\,\,{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). The degree of ionisation at the given temperature is
330325 At \(25^{\circ} \mathrm{C}\), the molar conductance at infinite dilution for the strong electrolytes \(\mathrm{NaOH}, \mathrm{NaCl}\) and \(\mathrm{BaCl}_{2}\) are \(248 \times 10^{-4}, 126 \times 10^{-4}\) and \(280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) respectively. \(\lambda_{\mathrm{m}}^{\circ} \mathrm{Ba}(\mathrm{OH})_{2}\) in \(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\) is
330326 A weak monobasic acid is \({\rm{5\% }}\) dissociated in 0.01 M solution limiting molar conductivity of acid at infinite dilution is \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). What will be the conductivity of 0.05 M solution of the acid ?