Kohlrausch Law of Independent migration of Ions and Its Applications
CHXII03:ELECTROCHEMISTRY

330319 The molar conductance of acetic acid at infinite dilution is 390.7 and for \(0.1 \mathrm{M}\) acetic acid solution is \(5.2\,\,{\text{ohm c}}{{\text{m}}^2} {\text{mo}}{{\text{l}}^{ - 1}}\). The degree of dissociation of \(0.1\,\,{\text{M C}}{{\text{H}}_3}{\text{COOH}}\) solution is:

1 \(13.3 \%\)
2 \(0.0133 \%\)
3 \(1.33 \%\)
4 \(133 \%\)
CHXII03:ELECTROCHEMISTRY

330320 The Kohlrausch law is related to

1 Conductance of ions at infinite dilution
2 Independent migration of ions
3 Both (1) and (2)
4 Neither (1) nor (2)
CHXII03:ELECTROCHEMISTRY

330321 The molar conductance of \({\rm{NaCl,}}\,\,{\rm{HCl}}\,\,{\rm{and}}\,\,{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COONa}}\) at infinite dilution are \({\rm{126}}{\rm{.45,}}\,\,{\rm{426}}{\rm{.16}}\,\,{\rm{and}}\,\,{\rm{91}}{\rm{.0}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductance of \({\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}}\) at infinite dilution is.
Choose the right option for your answer.

1 \({\rm{390}}{\rm{.71}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{540}}{\rm{.48}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{201}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330332 The resistance of 0.01 N solution of an electrolyte was found to be 220 ohm at 298 K using a conductivity cell with a cell constant of \({\rm{0}}{\rm{.88}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). The value of equivalent conductance of solution is

1 \({\rm{400}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
2 \({\rm{295}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
3 \({\rm{419}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
4 \({\rm{425}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330319 The molar conductance of acetic acid at infinite dilution is 390.7 and for \(0.1 \mathrm{M}\) acetic acid solution is \(5.2\,\,{\text{ohm c}}{{\text{m}}^2} {\text{mo}}{{\text{l}}^{ - 1}}\). The degree of dissociation of \(0.1\,\,{\text{M C}}{{\text{H}}_3}{\text{COOH}}\) solution is:

1 \(13.3 \%\)
2 \(0.0133 \%\)
3 \(1.33 \%\)
4 \(133 \%\)
CHXII03:ELECTROCHEMISTRY

330320 The Kohlrausch law is related to

1 Conductance of ions at infinite dilution
2 Independent migration of ions
3 Both (1) and (2)
4 Neither (1) nor (2)
CHXII03:ELECTROCHEMISTRY

330321 The molar conductance of \({\rm{NaCl,}}\,\,{\rm{HCl}}\,\,{\rm{and}}\,\,{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COONa}}\) at infinite dilution are \({\rm{126}}{\rm{.45,}}\,\,{\rm{426}}{\rm{.16}}\,\,{\rm{and}}\,\,{\rm{91}}{\rm{.0}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductance of \({\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}}\) at infinite dilution is.
Choose the right option for your answer.

1 \({\rm{390}}{\rm{.71}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{540}}{\rm{.48}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{201}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330332 The resistance of 0.01 N solution of an electrolyte was found to be 220 ohm at 298 K using a conductivity cell with a cell constant of \({\rm{0}}{\rm{.88}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). The value of equivalent conductance of solution is

1 \({\rm{400}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
2 \({\rm{295}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
3 \({\rm{419}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
4 \({\rm{425}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330319 The molar conductance of acetic acid at infinite dilution is 390.7 and for \(0.1 \mathrm{M}\) acetic acid solution is \(5.2\,\,{\text{ohm c}}{{\text{m}}^2} {\text{mo}}{{\text{l}}^{ - 1}}\). The degree of dissociation of \(0.1\,\,{\text{M C}}{{\text{H}}_3}{\text{COOH}}\) solution is:

1 \(13.3 \%\)
2 \(0.0133 \%\)
3 \(1.33 \%\)
4 \(133 \%\)
CHXII03:ELECTROCHEMISTRY

330320 The Kohlrausch law is related to

1 Conductance of ions at infinite dilution
2 Independent migration of ions
3 Both (1) and (2)
4 Neither (1) nor (2)
CHXII03:ELECTROCHEMISTRY

330321 The molar conductance of \({\rm{NaCl,}}\,\,{\rm{HCl}}\,\,{\rm{and}}\,\,{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COONa}}\) at infinite dilution are \({\rm{126}}{\rm{.45,}}\,\,{\rm{426}}{\rm{.16}}\,\,{\rm{and}}\,\,{\rm{91}}{\rm{.0}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductance of \({\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}}\) at infinite dilution is.
Choose the right option for your answer.

1 \({\rm{390}}{\rm{.71}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{540}}{\rm{.48}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{201}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330332 The resistance of 0.01 N solution of an electrolyte was found to be 220 ohm at 298 K using a conductivity cell with a cell constant of \({\rm{0}}{\rm{.88}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). The value of equivalent conductance of solution is

1 \({\rm{400}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
2 \({\rm{295}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
3 \({\rm{419}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
4 \({\rm{425}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330319 The molar conductance of acetic acid at infinite dilution is 390.7 and for \(0.1 \mathrm{M}\) acetic acid solution is \(5.2\,\,{\text{ohm c}}{{\text{m}}^2} {\text{mo}}{{\text{l}}^{ - 1}}\). The degree of dissociation of \(0.1\,\,{\text{M C}}{{\text{H}}_3}{\text{COOH}}\) solution is:

1 \(13.3 \%\)
2 \(0.0133 \%\)
3 \(1.33 \%\)
4 \(133 \%\)
CHXII03:ELECTROCHEMISTRY

330320 The Kohlrausch law is related to

1 Conductance of ions at infinite dilution
2 Independent migration of ions
3 Both (1) and (2)
4 Neither (1) nor (2)
CHXII03:ELECTROCHEMISTRY

330321 The molar conductance of \({\rm{NaCl,}}\,\,{\rm{HCl}}\,\,{\rm{and}}\,\,{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COONa}}\) at infinite dilution are \({\rm{126}}{\rm{.45,}}\,\,{\rm{426}}{\rm{.16}}\,\,{\rm{and}}\,\,{\rm{91}}{\rm{.0}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductance of \({\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}}\) at infinite dilution is.
Choose the right option for your answer.

1 \({\rm{390}}{\rm{.71}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{698}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{540}}{\rm{.48}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{201}}{\rm{.28}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330332 The resistance of 0.01 N solution of an electrolyte was found to be 220 ohm at 298 K using a conductivity cell with a cell constant of \({\rm{0}}{\rm{.88}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). The value of equivalent conductance of solution is

1 \({\rm{400}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
2 \({\rm{295}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
3 \({\rm{419}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)
4 \({\rm{425}}\,\,{\rm{ohm}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{g}}\,\,{\rm{e}}{{\rm{q}}^{{\rm{ - 1}}}}\)