330076
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} {F_2} + 2e \to 2{F^ - }{\mkern 1mu} {\mkern 1mu} is{\mkern 1mu} {\mkern 1mu} \,\,2.8{\mkern 1mu} {\mkern 1mu} V,{\mkern 1mu} {\mkern 1mu} \)
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} \frac{1}{2}{F_2} + e \to {F^ - }{\mkern 1mu} {\mkern 1mu} is\)
330078 The standard reduction potentials for \({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Zn,}}\,\,{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{/Ni}}\,\,{\rm{and}}\,\,{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe}}\)\({\rm{are}}\,\,{\rm{ - 0}}{\rm{.76,}}\,\,{\rm{ - 0}}{\rm{.23}}\,\,{\rm{and}}\,\,{\rm{ - 0}}{\rm{.44}}\,\,{\rm{V}}\) respectively. The reaction \(X + {Y^{2 + }} \to {X^2} + Y\) will be spontaneous when
330079
Consider the following \({{\rm{E}}^{\rm{o}}}\) values:
\({\rm{E}}_{{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{/F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.77}}\,\,{\rm{V}}\)
\({\rm{E}}_{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.14}}\,\,{\rm{V}}\)
Under standard conditions the potential for the reaction
\({\rm{Sn}}\left( s \right) + 2F{e^{3 + }}\left( {aq} \right) \to 2F{e^{2 + }}\left( {sq} \right) + S{n^{2 + }}\left( {aq} \right)\) is
330076
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} {F_2} + 2e \to 2{F^ - }{\mkern 1mu} {\mkern 1mu} is{\mkern 1mu} {\mkern 1mu} \,\,2.8{\mkern 1mu} {\mkern 1mu} V,{\mkern 1mu} {\mkern 1mu} \)
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} \frac{1}{2}{F_2} + e \to {F^ - }{\mkern 1mu} {\mkern 1mu} is\)
330078 The standard reduction potentials for \({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Zn,}}\,\,{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{/Ni}}\,\,{\rm{and}}\,\,{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe}}\)\({\rm{are}}\,\,{\rm{ - 0}}{\rm{.76,}}\,\,{\rm{ - 0}}{\rm{.23}}\,\,{\rm{and}}\,\,{\rm{ - 0}}{\rm{.44}}\,\,{\rm{V}}\) respectively. The reaction \(X + {Y^{2 + }} \to {X^2} + Y\) will be spontaneous when
330079
Consider the following \({{\rm{E}}^{\rm{o}}}\) values:
\({\rm{E}}_{{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{/F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.77}}\,\,{\rm{V}}\)
\({\rm{E}}_{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.14}}\,\,{\rm{V}}\)
Under standard conditions the potential for the reaction
\({\rm{Sn}}\left( s \right) + 2F{e^{3 + }}\left( {aq} \right) \to 2F{e^{2 + }}\left( {sq} \right) + S{n^{2 + }}\left( {aq} \right)\) is
330076
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} {F_2} + 2e \to 2{F^ - }{\mkern 1mu} {\mkern 1mu} is{\mkern 1mu} {\mkern 1mu} \,\,2.8{\mkern 1mu} {\mkern 1mu} V,{\mkern 1mu} {\mkern 1mu} \)
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} \frac{1}{2}{F_2} + e \to {F^ - }{\mkern 1mu} {\mkern 1mu} is\)
330078 The standard reduction potentials for \({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Zn,}}\,\,{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{/Ni}}\,\,{\rm{and}}\,\,{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe}}\)\({\rm{are}}\,\,{\rm{ - 0}}{\rm{.76,}}\,\,{\rm{ - 0}}{\rm{.23}}\,\,{\rm{and}}\,\,{\rm{ - 0}}{\rm{.44}}\,\,{\rm{V}}\) respectively. The reaction \(X + {Y^{2 + }} \to {X^2} + Y\) will be spontaneous when
330079
Consider the following \({{\rm{E}}^{\rm{o}}}\) values:
\({\rm{E}}_{{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{/F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.77}}\,\,{\rm{V}}\)
\({\rm{E}}_{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.14}}\,\,{\rm{V}}\)
Under standard conditions the potential for the reaction
\({\rm{Sn}}\left( s \right) + 2F{e^{3 + }}\left( {aq} \right) \to 2F{e^{2 + }}\left( {sq} \right) + S{n^{2 + }}\left( {aq} \right)\) is
330076
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} {F_2} + 2e \to 2{F^ - }{\mkern 1mu} {\mkern 1mu} is{\mkern 1mu} {\mkern 1mu} \,\,2.8{\mkern 1mu} {\mkern 1mu} V,{\mkern 1mu} {\mkern 1mu} \)
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} \frac{1}{2}{F_2} + e \to {F^ - }{\mkern 1mu} {\mkern 1mu} is\)
330078 The standard reduction potentials for \({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Zn,}}\,\,{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{/Ni}}\,\,{\rm{and}}\,\,{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe}}\)\({\rm{are}}\,\,{\rm{ - 0}}{\rm{.76,}}\,\,{\rm{ - 0}}{\rm{.23}}\,\,{\rm{and}}\,\,{\rm{ - 0}}{\rm{.44}}\,\,{\rm{V}}\) respectively. The reaction \(X + {Y^{2 + }} \to {X^2} + Y\) will be spontaneous when
330079
Consider the following \({{\rm{E}}^{\rm{o}}}\) values:
\({\rm{E}}_{{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{/F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.77}}\,\,{\rm{V}}\)
\({\rm{E}}_{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.14}}\,\,{\rm{V}}\)
Under standard conditions the potential for the reaction
\({\rm{Sn}}\left( s \right) + 2F{e^{3 + }}\left( {aq} \right) \to 2F{e^{2 + }}\left( {sq} \right) + S{n^{2 + }}\left( {aq} \right)\) is
330076
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} {F_2} + 2e \to 2{F^ - }{\mkern 1mu} {\mkern 1mu} is{\mkern 1mu} {\mkern 1mu} \,\,2.8{\mkern 1mu} {\mkern 1mu} V,{\mkern 1mu} {\mkern 1mu} \)
\({E^o}{\mkern 1mu} {\mkern 1mu} for{\mkern 1mu} {\mkern 1mu} \frac{1}{2}{F_2} + e \to {F^ - }{\mkern 1mu} {\mkern 1mu} is\)
330078 The standard reduction potentials for \({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Zn,}}\,\,{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{/Ni}}\,\,{\rm{and}}\,\,{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe}}\)\({\rm{are}}\,\,{\rm{ - 0}}{\rm{.76,}}\,\,{\rm{ - 0}}{\rm{.23}}\,\,{\rm{and}}\,\,{\rm{ - 0}}{\rm{.44}}\,\,{\rm{V}}\) respectively. The reaction \(X + {Y^{2 + }} \to {X^2} + Y\) will be spontaneous when
330079
Consider the following \({{\rm{E}}^{\rm{o}}}\) values:
\({\rm{E}}_{{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{/F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.77}}\,\,{\rm{V}}\)
\({\rm{E}}_{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}^{\rm{o}}{\rm{ = + 0}}{\rm{.14}}\,\,{\rm{V}}\)
Under standard conditions the potential for the reaction
\({\rm{Sn}}\left( s \right) + 2F{e^{3 + }}\left( {aq} \right) \to 2F{e^{2 + }}\left( {sq} \right) + S{n^{2 + }}\left( {aq} \right)\) is