330066 The oxidation potentials of \({\rm{Zn,}}\,\,{\rm{Cu,}}\,\,{\rm{Ag,}}\,\,{{\rm{H}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{Ni}}\) are \({\rm{0}}{\rm{.76, - 0}}{\rm{.34, - 0}}{\rm{.80, 0}}{\rm{.00, 0}}{\rm{.25}}\) volt, respectively. Which of the following reactions will provide maximum voltage?
330067
If the half-cell reactions are given as
\({\rm{ I}}{\rm{. F}}{{\rm{e}}^{2 + }}({\rm{aq}}) + 2{{\rm{e}}^ - } \to {\rm{Fe(s)}},{\rm{E}}^\circ = - 0.44\;{\rm{V}}\)
\({\rm{II}}{\rm{. }}2{{\rm{H}}^ + }{\rm{(aq)}} + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} + 2{{\rm{e}}^ - } \to {{\rm{H}}_2}{\rm{O}}(l),\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{E}}^\circ = + 1.23\;{\rm{V}}\)
then \({\rm{E}}^\circ \) for the reaction,
\({\rm{Fe(s)}} + 2{{\rm{H}}^ + } + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} \to {\rm{F}}{{\rm{e}}^{2 + }}{\rm{(aq)}} + {{\rm{H}}_2}{\rm{O}}({\rm{l}})\)
330068 The EMF of the cell \(\left. {{\text{Ni}}} \right \vert \left. {{\text{N}}{{\text{i}}^{{\text{2 + }}}}} \right\vert \left. {{\text{C}}{{\text{u}}^{{\text{2 + }}}}} \right \vert {\text{Cu}}\left( {\text{s}} \right)\) is 0.59 volt. The standard reduction electrode potential of copper electrode is 0.34 volt. The standard reduction electrode potential of nickel electrode will be
330069
The \({{\rm{E}}^{\rm{o}}}\) for the following cell is 0.34 V. \(\left. {{\rm{In(s)}}} \right \vert \left. {{\rm{In(OH}}{{\rm{)}}_{\rm{3}}}{\rm{(aq)}}} \right\vert \left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}{\rm{(aq)}}} \right \vert {\rm{Sb(s)}}\)
[Using \({{\rm{E}}^{\rm{o}}}{\rm{ = - 1}}{\rm{.0V}}\) for the \(\left. {{\rm{In(O}}{{\rm{H}}_{\rm{3}}}{\rm{)}}} \right \vert \) In couple, calculate \({{\rm{E}}^{\rm{o}}}\) for the \(\left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}} \right \vert {\rm{Sb}}\) half-reaction:]
330070
The standard electrode potential for the half cell reactions are
\({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}} + 2{e^ - } \to Zn;\,\,{E^o} = - 0.76\,\,V\)
\(F{e^{2 + }} + 2{e^ - } \to Fe;\,\,{E^o} = - 0.44\,\,V\)
The e.m.f of the cell reaction
\(F{e^{2 + }} + Zn \to Z{n^{2 + }} + Fe\)
330066 The oxidation potentials of \({\rm{Zn,}}\,\,{\rm{Cu,}}\,\,{\rm{Ag,}}\,\,{{\rm{H}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{Ni}}\) are \({\rm{0}}{\rm{.76, - 0}}{\rm{.34, - 0}}{\rm{.80, 0}}{\rm{.00, 0}}{\rm{.25}}\) volt, respectively. Which of the following reactions will provide maximum voltage?
330067
If the half-cell reactions are given as
\({\rm{ I}}{\rm{. F}}{{\rm{e}}^{2 + }}({\rm{aq}}) + 2{{\rm{e}}^ - } \to {\rm{Fe(s)}},{\rm{E}}^\circ = - 0.44\;{\rm{V}}\)
\({\rm{II}}{\rm{. }}2{{\rm{H}}^ + }{\rm{(aq)}} + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} + 2{{\rm{e}}^ - } \to {{\rm{H}}_2}{\rm{O}}(l),\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{E}}^\circ = + 1.23\;{\rm{V}}\)
then \({\rm{E}}^\circ \) for the reaction,
\({\rm{Fe(s)}} + 2{{\rm{H}}^ + } + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} \to {\rm{F}}{{\rm{e}}^{2 + }}{\rm{(aq)}} + {{\rm{H}}_2}{\rm{O}}({\rm{l}})\)
330068 The EMF of the cell \(\left. {{\text{Ni}}} \right \vert \left. {{\text{N}}{{\text{i}}^{{\text{2 + }}}}} \right\vert \left. {{\text{C}}{{\text{u}}^{{\text{2 + }}}}} \right \vert {\text{Cu}}\left( {\text{s}} \right)\) is 0.59 volt. The standard reduction electrode potential of copper electrode is 0.34 volt. The standard reduction electrode potential of nickel electrode will be
330069
The \({{\rm{E}}^{\rm{o}}}\) for the following cell is 0.34 V. \(\left. {{\rm{In(s)}}} \right \vert \left. {{\rm{In(OH}}{{\rm{)}}_{\rm{3}}}{\rm{(aq)}}} \right\vert \left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}{\rm{(aq)}}} \right \vert {\rm{Sb(s)}}\)
[Using \({{\rm{E}}^{\rm{o}}}{\rm{ = - 1}}{\rm{.0V}}\) for the \(\left. {{\rm{In(O}}{{\rm{H}}_{\rm{3}}}{\rm{)}}} \right \vert \) In couple, calculate \({{\rm{E}}^{\rm{o}}}\) for the \(\left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}} \right \vert {\rm{Sb}}\) half-reaction:]
330070
The standard electrode potential for the half cell reactions are
\({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}} + 2{e^ - } \to Zn;\,\,{E^o} = - 0.76\,\,V\)
\(F{e^{2 + }} + 2{e^ - } \to Fe;\,\,{E^o} = - 0.44\,\,V\)
The e.m.f of the cell reaction
\(F{e^{2 + }} + Zn \to Z{n^{2 + }} + Fe\)
330066 The oxidation potentials of \({\rm{Zn,}}\,\,{\rm{Cu,}}\,\,{\rm{Ag,}}\,\,{{\rm{H}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{Ni}}\) are \({\rm{0}}{\rm{.76, - 0}}{\rm{.34, - 0}}{\rm{.80, 0}}{\rm{.00, 0}}{\rm{.25}}\) volt, respectively. Which of the following reactions will provide maximum voltage?
330067
If the half-cell reactions are given as
\({\rm{ I}}{\rm{. F}}{{\rm{e}}^{2 + }}({\rm{aq}}) + 2{{\rm{e}}^ - } \to {\rm{Fe(s)}},{\rm{E}}^\circ = - 0.44\;{\rm{V}}\)
\({\rm{II}}{\rm{. }}2{{\rm{H}}^ + }{\rm{(aq)}} + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} + 2{{\rm{e}}^ - } \to {{\rm{H}}_2}{\rm{O}}(l),\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{E}}^\circ = + 1.23\;{\rm{V}}\)
then \({\rm{E}}^\circ \) for the reaction,
\({\rm{Fe(s)}} + 2{{\rm{H}}^ + } + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} \to {\rm{F}}{{\rm{e}}^{2 + }}{\rm{(aq)}} + {{\rm{H}}_2}{\rm{O}}({\rm{l}})\)
330068 The EMF of the cell \(\left. {{\text{Ni}}} \right \vert \left. {{\text{N}}{{\text{i}}^{{\text{2 + }}}}} \right\vert \left. {{\text{C}}{{\text{u}}^{{\text{2 + }}}}} \right \vert {\text{Cu}}\left( {\text{s}} \right)\) is 0.59 volt. The standard reduction electrode potential of copper electrode is 0.34 volt. The standard reduction electrode potential of nickel electrode will be
330069
The \({{\rm{E}}^{\rm{o}}}\) for the following cell is 0.34 V. \(\left. {{\rm{In(s)}}} \right \vert \left. {{\rm{In(OH}}{{\rm{)}}_{\rm{3}}}{\rm{(aq)}}} \right\vert \left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}{\rm{(aq)}}} \right \vert {\rm{Sb(s)}}\)
[Using \({{\rm{E}}^{\rm{o}}}{\rm{ = - 1}}{\rm{.0V}}\) for the \(\left. {{\rm{In(O}}{{\rm{H}}_{\rm{3}}}{\rm{)}}} \right \vert \) In couple, calculate \({{\rm{E}}^{\rm{o}}}\) for the \(\left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}} \right \vert {\rm{Sb}}\) half-reaction:]
330070
The standard electrode potential for the half cell reactions are
\({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}} + 2{e^ - } \to Zn;\,\,{E^o} = - 0.76\,\,V\)
\(F{e^{2 + }} + 2{e^ - } \to Fe;\,\,{E^o} = - 0.44\,\,V\)
The e.m.f of the cell reaction
\(F{e^{2 + }} + Zn \to Z{n^{2 + }} + Fe\)
330066 The oxidation potentials of \({\rm{Zn,}}\,\,{\rm{Cu,}}\,\,{\rm{Ag,}}\,\,{{\rm{H}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{Ni}}\) are \({\rm{0}}{\rm{.76, - 0}}{\rm{.34, - 0}}{\rm{.80, 0}}{\rm{.00, 0}}{\rm{.25}}\) volt, respectively. Which of the following reactions will provide maximum voltage?
330067
If the half-cell reactions are given as
\({\rm{ I}}{\rm{. F}}{{\rm{e}}^{2 + }}({\rm{aq}}) + 2{{\rm{e}}^ - } \to {\rm{Fe(s)}},{\rm{E}}^\circ = - 0.44\;{\rm{V}}\)
\({\rm{II}}{\rm{. }}2{{\rm{H}}^ + }{\rm{(aq)}} + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} + 2{{\rm{e}}^ - } \to {{\rm{H}}_2}{\rm{O}}(l),\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{E}}^\circ = + 1.23\;{\rm{V}}\)
then \({\rm{E}}^\circ \) for the reaction,
\({\rm{Fe(s)}} + 2{{\rm{H}}^ + } + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} \to {\rm{F}}{{\rm{e}}^{2 + }}{\rm{(aq)}} + {{\rm{H}}_2}{\rm{O}}({\rm{l}})\)
330068 The EMF of the cell \(\left. {{\text{Ni}}} \right \vert \left. {{\text{N}}{{\text{i}}^{{\text{2 + }}}}} \right\vert \left. {{\text{C}}{{\text{u}}^{{\text{2 + }}}}} \right \vert {\text{Cu}}\left( {\text{s}} \right)\) is 0.59 volt. The standard reduction electrode potential of copper electrode is 0.34 volt. The standard reduction electrode potential of nickel electrode will be
330069
The \({{\rm{E}}^{\rm{o}}}\) for the following cell is 0.34 V. \(\left. {{\rm{In(s)}}} \right \vert \left. {{\rm{In(OH}}{{\rm{)}}_{\rm{3}}}{\rm{(aq)}}} \right\vert \left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}{\rm{(aq)}}} \right \vert {\rm{Sb(s)}}\)
[Using \({{\rm{E}}^{\rm{o}}}{\rm{ = - 1}}{\rm{.0V}}\) for the \(\left. {{\rm{In(O}}{{\rm{H}}_{\rm{3}}}{\rm{)}}} \right \vert \) In couple, calculate \({{\rm{E}}^{\rm{o}}}\) for the \(\left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}} \right \vert {\rm{Sb}}\) half-reaction:]
330070
The standard electrode potential for the half cell reactions are
\({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}} + 2{e^ - } \to Zn;\,\,{E^o} = - 0.76\,\,V\)
\(F{e^{2 + }} + 2{e^ - } \to Fe;\,\,{E^o} = - 0.44\,\,V\)
The e.m.f of the cell reaction
\(F{e^{2 + }} + Zn \to Z{n^{2 + }} + Fe\)
330066 The oxidation potentials of \({\rm{Zn,}}\,\,{\rm{Cu,}}\,\,{\rm{Ag,}}\,\,{{\rm{H}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{Ni}}\) are \({\rm{0}}{\rm{.76, - 0}}{\rm{.34, - 0}}{\rm{.80, 0}}{\rm{.00, 0}}{\rm{.25}}\) volt, respectively. Which of the following reactions will provide maximum voltage?
330067
If the half-cell reactions are given as
\({\rm{ I}}{\rm{. F}}{{\rm{e}}^{2 + }}({\rm{aq}}) + 2{{\rm{e}}^ - } \to {\rm{Fe(s)}},{\rm{E}}^\circ = - 0.44\;{\rm{V}}\)
\({\rm{II}}{\rm{. }}2{{\rm{H}}^ + }{\rm{(aq)}} + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} + 2{{\rm{e}}^ - } \to {{\rm{H}}_2}{\rm{O}}(l),\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{E}}^\circ = + 1.23\;{\rm{V}}\)
then \({\rm{E}}^\circ \) for the reaction,
\({\rm{Fe(s)}} + 2{{\rm{H}}^ + } + \frac{1}{2}{{\rm{O}}_2}{\rm{(g)}} \to {\rm{F}}{{\rm{e}}^{2 + }}{\rm{(aq)}} + {{\rm{H}}_2}{\rm{O}}({\rm{l}})\)
330068 The EMF of the cell \(\left. {{\text{Ni}}} \right \vert \left. {{\text{N}}{{\text{i}}^{{\text{2 + }}}}} \right\vert \left. {{\text{C}}{{\text{u}}^{{\text{2 + }}}}} \right \vert {\text{Cu}}\left( {\text{s}} \right)\) is 0.59 volt. The standard reduction electrode potential of copper electrode is 0.34 volt. The standard reduction electrode potential of nickel electrode will be
330069
The \({{\rm{E}}^{\rm{o}}}\) for the following cell is 0.34 V. \(\left. {{\rm{In(s)}}} \right \vert \left. {{\rm{In(OH}}{{\rm{)}}_{\rm{3}}}{\rm{(aq)}}} \right\vert \left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}{\rm{(aq)}}} \right \vert {\rm{Sb(s)}}\)
[Using \({{\rm{E}}^{\rm{o}}}{\rm{ = - 1}}{\rm{.0V}}\) for the \(\left. {{\rm{In(O}}{{\rm{H}}_{\rm{3}}}{\rm{)}}} \right \vert \) In couple, calculate \({{\rm{E}}^{\rm{o}}}\) for the \(\left. {{\rm{SbO}}_{\rm{2}}^{\rm{ - }}} \right \vert {\rm{Sb}}\) half-reaction:]
330070
The standard electrode potential for the half cell reactions are
\({\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}} + 2{e^ - } \to Zn;\,\,{E^o} = - 0.76\,\,V\)
\(F{e^{2 + }} + 2{e^ - } \to Fe;\,\,{E^o} = - 0.44\,\,V\)
The e.m.f of the cell reaction
\(F{e^{2 + }} + Zn \to Z{n^{2 + }} + Fe\)