329965
Statement A :
The SRP of \({{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}\) electrode increases with increase in concentration of \({{\rm{M}}^{{\rm{ + n}}}}\,\,{\rm{ion}}\)
Statement B :
The SRP is given by \({{\rm{E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}}{\rm{ = E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}^{\rm{e}}{\rm{ + }}\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{n}}}{\rm{log[}}{{\rm{M}}^{{\rm{ + n}}}}{\rm{]}}\)
329966
The emf of the cell
\(\mathrm{M} \mid \mathrm{M}_{(0.02 \mathrm{M})}^{\mathrm{n}^{+}} \vert \mathrm{H}^{+}(1 \mathrm{M}), \mathrm{H}_{2}(\mathrm{~g}) 1\) atm, \(\mathrm{Pt}\) at \(25^{\circ} \mathrm{C}\) is \(0.81 \mathrm{~V}\). The valency of the metal, if the standard oxidation potential of the metal is 0.76 \(\mathrm{V}\) with is
329967
At 298 K the standard reduction potentials are 1.51 V for \(\left. {{\rm{MnO}}_{\rm{4}}^{\rm{ - }}} \right \vert \left. {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,}}\,\,{\rm{1}}{\rm{.36}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right \vert {\rm{C}}{{\rm{l}}^{\rm{ - }}}\), \(\left. {{\rm{1}}{\rm{.07}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right \vert \left. {{\rm{B}}{{\rm{r}}^{\rm{ - }}}{\rm{,}}\,\,{\rm{and}}\,\,{\rm{0}}{\rm{.54}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{{\rm{I}}_{\rm{2}}}} \right \vert {{\rm{I}}^{\rm{ - }}}\). At pH = 3, permanganate is expected to oxidise:
\(\left( {\frac{{{\rm{RT}}}}{{\rm{F}}}{\rm{ = 0}}{\rm{.059V}}} \right)\)
329968 Cell notation, \(\mathop {{\text{M}}\left \vert {{{\text{M}}^{2 + }}} \right \vert }\limits_{(0.01)} \mathop {\left \vert {{{\text{M}}^{2 + }}} \right \vert {\text{M}}}\limits_{(0.0001)} \). If value of \(\mathrm{E}_{\text {cell }}^{0}\) is 4 volt (Given, \(\dfrac{\mathrm{RT}}{\mathrm{F}} \log 10=0.06\) )
329965
Statement A :
The SRP of \({{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}\) electrode increases with increase in concentration of \({{\rm{M}}^{{\rm{ + n}}}}\,\,{\rm{ion}}\)
Statement B :
The SRP is given by \({{\rm{E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}}{\rm{ = E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}^{\rm{e}}{\rm{ + }}\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{n}}}{\rm{log[}}{{\rm{M}}^{{\rm{ + n}}}}{\rm{]}}\)
329966
The emf of the cell
\(\mathrm{M} \mid \mathrm{M}_{(0.02 \mathrm{M})}^{\mathrm{n}^{+}} \vert \mathrm{H}^{+}(1 \mathrm{M}), \mathrm{H}_{2}(\mathrm{~g}) 1\) atm, \(\mathrm{Pt}\) at \(25^{\circ} \mathrm{C}\) is \(0.81 \mathrm{~V}\). The valency of the metal, if the standard oxidation potential of the metal is 0.76 \(\mathrm{V}\) with is
329967
At 298 K the standard reduction potentials are 1.51 V for \(\left. {{\rm{MnO}}_{\rm{4}}^{\rm{ - }}} \right \vert \left. {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,}}\,\,{\rm{1}}{\rm{.36}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right \vert {\rm{C}}{{\rm{l}}^{\rm{ - }}}\), \(\left. {{\rm{1}}{\rm{.07}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right \vert \left. {{\rm{B}}{{\rm{r}}^{\rm{ - }}}{\rm{,}}\,\,{\rm{and}}\,\,{\rm{0}}{\rm{.54}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{{\rm{I}}_{\rm{2}}}} \right \vert {{\rm{I}}^{\rm{ - }}}\). At pH = 3, permanganate is expected to oxidise:
\(\left( {\frac{{{\rm{RT}}}}{{\rm{F}}}{\rm{ = 0}}{\rm{.059V}}} \right)\)
329968 Cell notation, \(\mathop {{\text{M}}\left \vert {{{\text{M}}^{2 + }}} \right \vert }\limits_{(0.01)} \mathop {\left \vert {{{\text{M}}^{2 + }}} \right \vert {\text{M}}}\limits_{(0.0001)} \). If value of \(\mathrm{E}_{\text {cell }}^{0}\) is 4 volt (Given, \(\dfrac{\mathrm{RT}}{\mathrm{F}} \log 10=0.06\) )
329965
Statement A :
The SRP of \({{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}\) electrode increases with increase in concentration of \({{\rm{M}}^{{\rm{ + n}}}}\,\,{\rm{ion}}\)
Statement B :
The SRP is given by \({{\rm{E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}}{\rm{ = E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}^{\rm{e}}{\rm{ + }}\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{n}}}{\rm{log[}}{{\rm{M}}^{{\rm{ + n}}}}{\rm{]}}\)
329966
The emf of the cell
\(\mathrm{M} \mid \mathrm{M}_{(0.02 \mathrm{M})}^{\mathrm{n}^{+}} \vert \mathrm{H}^{+}(1 \mathrm{M}), \mathrm{H}_{2}(\mathrm{~g}) 1\) atm, \(\mathrm{Pt}\) at \(25^{\circ} \mathrm{C}\) is \(0.81 \mathrm{~V}\). The valency of the metal, if the standard oxidation potential of the metal is 0.76 \(\mathrm{V}\) with is
329967
At 298 K the standard reduction potentials are 1.51 V for \(\left. {{\rm{MnO}}_{\rm{4}}^{\rm{ - }}} \right \vert \left. {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,}}\,\,{\rm{1}}{\rm{.36}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right \vert {\rm{C}}{{\rm{l}}^{\rm{ - }}}\), \(\left. {{\rm{1}}{\rm{.07}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right \vert \left. {{\rm{B}}{{\rm{r}}^{\rm{ - }}}{\rm{,}}\,\,{\rm{and}}\,\,{\rm{0}}{\rm{.54}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{{\rm{I}}_{\rm{2}}}} \right \vert {{\rm{I}}^{\rm{ - }}}\). At pH = 3, permanganate is expected to oxidise:
\(\left( {\frac{{{\rm{RT}}}}{{\rm{F}}}{\rm{ = 0}}{\rm{.059V}}} \right)\)
329968 Cell notation, \(\mathop {{\text{M}}\left \vert {{{\text{M}}^{2 + }}} \right \vert }\limits_{(0.01)} \mathop {\left \vert {{{\text{M}}^{2 + }}} \right \vert {\text{M}}}\limits_{(0.0001)} \). If value of \(\mathrm{E}_{\text {cell }}^{0}\) is 4 volt (Given, \(\dfrac{\mathrm{RT}}{\mathrm{F}} \log 10=0.06\) )
329965
Statement A :
The SRP of \({{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}\) electrode increases with increase in concentration of \({{\rm{M}}^{{\rm{ + n}}}}\,\,{\rm{ion}}\)
Statement B :
The SRP is given by \({{\rm{E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}}{\rm{ = E}}_{{{\rm{M}}^{{\rm{ + n}}}}{\rm{/M}}}^{\rm{e}}{\rm{ + }}\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{n}}}{\rm{log[}}{{\rm{M}}^{{\rm{ + n}}}}{\rm{]}}\)
329966
The emf of the cell
\(\mathrm{M} \mid \mathrm{M}_{(0.02 \mathrm{M})}^{\mathrm{n}^{+}} \vert \mathrm{H}^{+}(1 \mathrm{M}), \mathrm{H}_{2}(\mathrm{~g}) 1\) atm, \(\mathrm{Pt}\) at \(25^{\circ} \mathrm{C}\) is \(0.81 \mathrm{~V}\). The valency of the metal, if the standard oxidation potential of the metal is 0.76 \(\mathrm{V}\) with is
329967
At 298 K the standard reduction potentials are 1.51 V for \(\left. {{\rm{MnO}}_{\rm{4}}^{\rm{ - }}} \right \vert \left. {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,}}\,\,{\rm{1}}{\rm{.36}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right \vert {\rm{C}}{{\rm{l}}^{\rm{ - }}}\), \(\left. {{\rm{1}}{\rm{.07}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right \vert \left. {{\rm{B}}{{\rm{r}}^{\rm{ - }}}{\rm{,}}\,\,{\rm{and}}\,\,{\rm{0}}{\rm{.54}}\,\,{\rm{V}}\,\,{\rm{for}}\,\,{{\rm{I}}_{\rm{2}}}} \right \vert {{\rm{I}}^{\rm{ - }}}\). At pH = 3, permanganate is expected to oxidise:
\(\left( {\frac{{{\rm{RT}}}}{{\rm{F}}}{\rm{ = 0}}{\rm{.059V}}} \right)\)
329968 Cell notation, \(\mathop {{\text{M}}\left \vert {{{\text{M}}^{2 + }}} \right \vert }\limits_{(0.01)} \mathop {\left \vert {{{\text{M}}^{2 + }}} \right \vert {\text{M}}}\limits_{(0.0001)} \). If value of \(\mathrm{E}_{\text {cell }}^{0}\) is 4 volt (Given, \(\dfrac{\mathrm{RT}}{\mathrm{F}} \log 10=0.06\) )