Effect of Concentration on emf of cell - Nernst Equation
CHXII03:ELECTROCHEMISTRY

329956 Two concentration cells of \({\rm{Ag}}\) with \({\rm{Ag}}\) electrode are dipped in solution of \(\mathrm{AgNO}_{3}\). In first cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is 0.1 and emf is \(0.06 \mathrm{~V}\). In second cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is \(0.01 \mathrm{M}\). Calculate the emf of second cell.

1 \(0.12 \mathrm{~V}\)
2 \(0.06 \mathrm{~V}\)
3 \(0.09 \mathrm{~V}\)
4 \(0.16 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329957 The Nernst equation is written as
\({{\rm{E}}_{{\rm{cell}}}}{\rm{ = E}}_{{\rm{cell}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{R}}\,{\rm{T}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}} \right]}}{{{{\left[ {{\rm{A}}{{\rm{g}}^{\rm{ + }}}} \right]}^{\rm{2}}}}}\)
Select the correct cell representation for the above equation.

1 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ag}}} \right \vert {\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}\)
2 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right \vert {\rm{Ag(s)}}\)
3 \(\left. {{\rm{Ag(s)}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right \vert {\rm{Ni(s)}}\)
4 \(\left. {{\rm{Ag}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ni(s)}}} \right \vert {\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}\)
CHXII03:ELECTROCHEMISTRY

329958 The concentration of \(\left[\mathrm{Fe}^{3+}\right]\) at equilibrium when potassium iodide is added to a solution of \(\mathrm{Fe}^{3+}\) initially \(0.50\,{\rm{M}}\) until \([{{\rm{I}}^ - }] = 1.0{\mkern 1mu} \,{\rm{M}}\) is ____\(({\rm{Given}}\,{\rm{E}}_{{\rm{F}}{{\rm{e}}^{3 + }}\mid {\rm{F}}{{\rm{e}}^{2 + }}}^0 = 0.770\;{\rm{V}},{\rm{E}}{^\circ _{{{\rm{I}}_2}{\rm{/}}{{\rm{I}}^ - }}} = 0.535\;{\rm{V}})\)

1 0.01 M
2 \(6 \times {10^{ - 4}}\,{\rm{M}}\)
3 \(0.535\,{\rm{M}}\)
4 \(5.2 \times {10^{ - 5}}\,{\rm{M}}\)
CHXII03:ELECTROCHEMISTRY

329959 Calculate E.M.F. of following cell at \({\rm{298K}}\)
\(\left. {\,{\rm{Zn}}\left( {\rm{s}} \right)} \right \vert \left. {{\rm{ZnSO4}}({\rm{0}}.{\rm{01M}})} \right \vert \left. {\left \vert {{\rm{CuSO4}}({\rm{1}}.{\rm{0M}})} \right.} \right \vert {\rm{Cu}}({\rm{s}})\,\,\)
\({\rm{if}}\,\,{{\rm{E}}^{\rm{o}}}{\rm{cell}}\,{\rm{ = }}\,{\rm{2}}.{\rm{0V}}\)

1 2.0 V
2 2.0592 V
3 2.0296
4 1.0508 V
CHXII03:ELECTROCHEMISTRY

329960 If hydrogen electrode dipped in two solutions of \(\mathrm{pH}=3\) and \(\mathrm{pH}=6\) and salt bridge is connected. The emf of resulting cell is

1 \(0.177 \mathrm{~V}\)
2 \(0.3 \mathrm{~V}\)
3 \(0.052 \mathrm{~V}\)
4 \(0.104 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329956 Two concentration cells of \({\rm{Ag}}\) with \({\rm{Ag}}\) electrode are dipped in solution of \(\mathrm{AgNO}_{3}\). In first cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is 0.1 and emf is \(0.06 \mathrm{~V}\). In second cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is \(0.01 \mathrm{M}\). Calculate the emf of second cell.

1 \(0.12 \mathrm{~V}\)
2 \(0.06 \mathrm{~V}\)
3 \(0.09 \mathrm{~V}\)
4 \(0.16 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329957 The Nernst equation is written as
\({{\rm{E}}_{{\rm{cell}}}}{\rm{ = E}}_{{\rm{cell}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{R}}\,{\rm{T}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}} \right]}}{{{{\left[ {{\rm{A}}{{\rm{g}}^{\rm{ + }}}} \right]}^{\rm{2}}}}}\)
Select the correct cell representation for the above equation.

1 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ag}}} \right \vert {\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}\)
2 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right \vert {\rm{Ag(s)}}\)
3 \(\left. {{\rm{Ag(s)}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right \vert {\rm{Ni(s)}}\)
4 \(\left. {{\rm{Ag}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ni(s)}}} \right \vert {\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}\)
CHXII03:ELECTROCHEMISTRY

329958 The concentration of \(\left[\mathrm{Fe}^{3+}\right]\) at equilibrium when potassium iodide is added to a solution of \(\mathrm{Fe}^{3+}\) initially \(0.50\,{\rm{M}}\) until \([{{\rm{I}}^ - }] = 1.0{\mkern 1mu} \,{\rm{M}}\) is ____\(({\rm{Given}}\,{\rm{E}}_{{\rm{F}}{{\rm{e}}^{3 + }}\mid {\rm{F}}{{\rm{e}}^{2 + }}}^0 = 0.770\;{\rm{V}},{\rm{E}}{^\circ _{{{\rm{I}}_2}{\rm{/}}{{\rm{I}}^ - }}} = 0.535\;{\rm{V}})\)

1 0.01 M
2 \(6 \times {10^{ - 4}}\,{\rm{M}}\)
3 \(0.535\,{\rm{M}}\)
4 \(5.2 \times {10^{ - 5}}\,{\rm{M}}\)
CHXII03:ELECTROCHEMISTRY

329959 Calculate E.M.F. of following cell at \({\rm{298K}}\)
\(\left. {\,{\rm{Zn}}\left( {\rm{s}} \right)} \right \vert \left. {{\rm{ZnSO4}}({\rm{0}}.{\rm{01M}})} \right \vert \left. {\left \vert {{\rm{CuSO4}}({\rm{1}}.{\rm{0M}})} \right.} \right \vert {\rm{Cu}}({\rm{s}})\,\,\)
\({\rm{if}}\,\,{{\rm{E}}^{\rm{o}}}{\rm{cell}}\,{\rm{ = }}\,{\rm{2}}.{\rm{0V}}\)

1 2.0 V
2 2.0592 V
3 2.0296
4 1.0508 V
CHXII03:ELECTROCHEMISTRY

329960 If hydrogen electrode dipped in two solutions of \(\mathrm{pH}=3\) and \(\mathrm{pH}=6\) and salt bridge is connected. The emf of resulting cell is

1 \(0.177 \mathrm{~V}\)
2 \(0.3 \mathrm{~V}\)
3 \(0.052 \mathrm{~V}\)
4 \(0.104 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329956 Two concentration cells of \({\rm{Ag}}\) with \({\rm{Ag}}\) electrode are dipped in solution of \(\mathrm{AgNO}_{3}\). In first cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is 0.1 and emf is \(0.06 \mathrm{~V}\). In second cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is \(0.01 \mathrm{M}\). Calculate the emf of second cell.

1 \(0.12 \mathrm{~V}\)
2 \(0.06 \mathrm{~V}\)
3 \(0.09 \mathrm{~V}\)
4 \(0.16 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329957 The Nernst equation is written as
\({{\rm{E}}_{{\rm{cell}}}}{\rm{ = E}}_{{\rm{cell}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{R}}\,{\rm{T}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}} \right]}}{{{{\left[ {{\rm{A}}{{\rm{g}}^{\rm{ + }}}} \right]}^{\rm{2}}}}}\)
Select the correct cell representation for the above equation.

1 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ag}}} \right \vert {\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}\)
2 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right \vert {\rm{Ag(s)}}\)
3 \(\left. {{\rm{Ag(s)}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right \vert {\rm{Ni(s)}}\)
4 \(\left. {{\rm{Ag}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ni(s)}}} \right \vert {\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}\)
CHXII03:ELECTROCHEMISTRY

329958 The concentration of \(\left[\mathrm{Fe}^{3+}\right]\) at equilibrium when potassium iodide is added to a solution of \(\mathrm{Fe}^{3+}\) initially \(0.50\,{\rm{M}}\) until \([{{\rm{I}}^ - }] = 1.0{\mkern 1mu} \,{\rm{M}}\) is ____\(({\rm{Given}}\,{\rm{E}}_{{\rm{F}}{{\rm{e}}^{3 + }}\mid {\rm{F}}{{\rm{e}}^{2 + }}}^0 = 0.770\;{\rm{V}},{\rm{E}}{^\circ _{{{\rm{I}}_2}{\rm{/}}{{\rm{I}}^ - }}} = 0.535\;{\rm{V}})\)

1 0.01 M
2 \(6 \times {10^{ - 4}}\,{\rm{M}}\)
3 \(0.535\,{\rm{M}}\)
4 \(5.2 \times {10^{ - 5}}\,{\rm{M}}\)
CHXII03:ELECTROCHEMISTRY

329959 Calculate E.M.F. of following cell at \({\rm{298K}}\)
\(\left. {\,{\rm{Zn}}\left( {\rm{s}} \right)} \right \vert \left. {{\rm{ZnSO4}}({\rm{0}}.{\rm{01M}})} \right \vert \left. {\left \vert {{\rm{CuSO4}}({\rm{1}}.{\rm{0M}})} \right.} \right \vert {\rm{Cu}}({\rm{s}})\,\,\)
\({\rm{if}}\,\,{{\rm{E}}^{\rm{o}}}{\rm{cell}}\,{\rm{ = }}\,{\rm{2}}.{\rm{0V}}\)

1 2.0 V
2 2.0592 V
3 2.0296
4 1.0508 V
CHXII03:ELECTROCHEMISTRY

329960 If hydrogen electrode dipped in two solutions of \(\mathrm{pH}=3\) and \(\mathrm{pH}=6\) and salt bridge is connected. The emf of resulting cell is

1 \(0.177 \mathrm{~V}\)
2 \(0.3 \mathrm{~V}\)
3 \(0.052 \mathrm{~V}\)
4 \(0.104 \mathrm{~V}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

329956 Two concentration cells of \({\rm{Ag}}\) with \({\rm{Ag}}\) electrode are dipped in solution of \(\mathrm{AgNO}_{3}\). In first cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is 0.1 and emf is \(0.06 \mathrm{~V}\). In second cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is \(0.01 \mathrm{M}\). Calculate the emf of second cell.

1 \(0.12 \mathrm{~V}\)
2 \(0.06 \mathrm{~V}\)
3 \(0.09 \mathrm{~V}\)
4 \(0.16 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329957 The Nernst equation is written as
\({{\rm{E}}_{{\rm{cell}}}}{\rm{ = E}}_{{\rm{cell}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{R}}\,{\rm{T}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}} \right]}}{{{{\left[ {{\rm{A}}{{\rm{g}}^{\rm{ + }}}} \right]}^{\rm{2}}}}}\)
Select the correct cell representation for the above equation.

1 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ag}}} \right \vert {\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}\)
2 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right \vert {\rm{Ag(s)}}\)
3 \(\left. {{\rm{Ag(s)}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right \vert {\rm{Ni(s)}}\)
4 \(\left. {{\rm{Ag}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ni(s)}}} \right \vert {\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}\)
CHXII03:ELECTROCHEMISTRY

329958 The concentration of \(\left[\mathrm{Fe}^{3+}\right]\) at equilibrium when potassium iodide is added to a solution of \(\mathrm{Fe}^{3+}\) initially \(0.50\,{\rm{M}}\) until \([{{\rm{I}}^ - }] = 1.0{\mkern 1mu} \,{\rm{M}}\) is ____\(({\rm{Given}}\,{\rm{E}}_{{\rm{F}}{{\rm{e}}^{3 + }}\mid {\rm{F}}{{\rm{e}}^{2 + }}}^0 = 0.770\;{\rm{V}},{\rm{E}}{^\circ _{{{\rm{I}}_2}{\rm{/}}{{\rm{I}}^ - }}} = 0.535\;{\rm{V}})\)

1 0.01 M
2 \(6 \times {10^{ - 4}}\,{\rm{M}}\)
3 \(0.535\,{\rm{M}}\)
4 \(5.2 \times {10^{ - 5}}\,{\rm{M}}\)
CHXII03:ELECTROCHEMISTRY

329959 Calculate E.M.F. of following cell at \({\rm{298K}}\)
\(\left. {\,{\rm{Zn}}\left( {\rm{s}} \right)} \right \vert \left. {{\rm{ZnSO4}}({\rm{0}}.{\rm{01M}})} \right \vert \left. {\left \vert {{\rm{CuSO4}}({\rm{1}}.{\rm{0M}})} \right.} \right \vert {\rm{Cu}}({\rm{s}})\,\,\)
\({\rm{if}}\,\,{{\rm{E}}^{\rm{o}}}{\rm{cell}}\,{\rm{ = }}\,{\rm{2}}.{\rm{0V}}\)

1 2.0 V
2 2.0592 V
3 2.0296
4 1.0508 V
CHXII03:ELECTROCHEMISTRY

329960 If hydrogen electrode dipped in two solutions of \(\mathrm{pH}=3\) and \(\mathrm{pH}=6\) and salt bridge is connected. The emf of resulting cell is

1 \(0.177 \mathrm{~V}\)
2 \(0.3 \mathrm{~V}\)
3 \(0.052 \mathrm{~V}\)
4 \(0.104 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329956 Two concentration cells of \({\rm{Ag}}\) with \({\rm{Ag}}\) electrode are dipped in solution of \(\mathrm{AgNO}_{3}\). In first cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is 0.1 and emf is \(0.06 \mathrm{~V}\). In second cell, concentration of one electrode is \(1 \mathrm{M}\) and other electrode is \(0.01 \mathrm{M}\). Calculate the emf of second cell.

1 \(0.12 \mathrm{~V}\)
2 \(0.06 \mathrm{~V}\)
3 \(0.09 \mathrm{~V}\)
4 \(0.16 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329957 The Nernst equation is written as
\({{\rm{E}}_{{\rm{cell}}}}{\rm{ = E}}_{{\rm{cell}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{R}}\,{\rm{T}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}} \right]}}{{{{\left[ {{\rm{A}}{{\rm{g}}^{\rm{ + }}}} \right]}^{\rm{2}}}}}\)
Select the correct cell representation for the above equation.

1 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ag}}} \right \vert {\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}\)
2 \(\left. {{\rm{Ni(s)}}} \right \vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right\vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right \vert {\rm{Ag(s)}}\)
3 \(\left. {{\rm{Ag(s)}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}} \right \vert {\rm{Ni(s)}}\)
4 \(\left. {{\rm{Ag}}} \right \vert \left. {{\rm{A}}{{\rm{g}}^{\rm{ + }}}{\rm{(aq)}}} \right\vert \left. {{\rm{Ni(s)}}} \right \vert {\rm{N}}{{\rm{i}}^{{\rm{2 + }}}}{\rm{(aq)}}\)
CHXII03:ELECTROCHEMISTRY

329958 The concentration of \(\left[\mathrm{Fe}^{3+}\right]\) at equilibrium when potassium iodide is added to a solution of \(\mathrm{Fe}^{3+}\) initially \(0.50\,{\rm{M}}\) until \([{{\rm{I}}^ - }] = 1.0{\mkern 1mu} \,{\rm{M}}\) is ____\(({\rm{Given}}\,{\rm{E}}_{{\rm{F}}{{\rm{e}}^{3 + }}\mid {\rm{F}}{{\rm{e}}^{2 + }}}^0 = 0.770\;{\rm{V}},{\rm{E}}{^\circ _{{{\rm{I}}_2}{\rm{/}}{{\rm{I}}^ - }}} = 0.535\;{\rm{V}})\)

1 0.01 M
2 \(6 \times {10^{ - 4}}\,{\rm{M}}\)
3 \(0.535\,{\rm{M}}\)
4 \(5.2 \times {10^{ - 5}}\,{\rm{M}}\)
CHXII03:ELECTROCHEMISTRY

329959 Calculate E.M.F. of following cell at \({\rm{298K}}\)
\(\left. {\,{\rm{Zn}}\left( {\rm{s}} \right)} \right \vert \left. {{\rm{ZnSO4}}({\rm{0}}.{\rm{01M}})} \right \vert \left. {\left \vert {{\rm{CuSO4}}({\rm{1}}.{\rm{0M}})} \right.} \right \vert {\rm{Cu}}({\rm{s}})\,\,\)
\({\rm{if}}\,\,{{\rm{E}}^{\rm{o}}}{\rm{cell}}\,{\rm{ = }}\,{\rm{2}}.{\rm{0V}}\)

1 2.0 V
2 2.0592 V
3 2.0296
4 1.0508 V
CHXII03:ELECTROCHEMISTRY

329960 If hydrogen electrode dipped in two solutions of \(\mathrm{pH}=3\) and \(\mathrm{pH}=6\) and salt bridge is connected. The emf of resulting cell is

1 \(0.177 \mathrm{~V}\)
2 \(0.3 \mathrm{~V}\)
3 \(0.052 \mathrm{~V}\)
4 \(0.104 \mathrm{~V}\)