318923
Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)
1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
Explanation:
The face centred cubic unit cell contains 4 atoms \(\therefore\) Total volume of atoms \({\rm{ = 4 \times }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}{\rm{ = }}\frac{{{\rm{16}}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}\)
CHXII01:THE SOLID STATE
318924
The empty space left in a hexagonal close packing of spheres in three dimensions is
1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
Explanation:
Empty space in a HCP arrangement \(=100\) - Packing efficiency \(=100-74=26 \%\)
CHXII01:THE SOLID STATE
318925
The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is: (Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )
318926
In which pair most efficient packing is present?
1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
Explanation:
Packing efficiency of \(\mathrm{HCP}\) and CCP is \(74 \%\).
CHXII01:THE SOLID STATE
318927
The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\). The value of \({\mathrm{(x-y)}}\) is
318923
Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)
1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
Explanation:
The face centred cubic unit cell contains 4 atoms \(\therefore\) Total volume of atoms \({\rm{ = 4 \times }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}{\rm{ = }}\frac{{{\rm{16}}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}\)
CHXII01:THE SOLID STATE
318924
The empty space left in a hexagonal close packing of spheres in three dimensions is
1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
Explanation:
Empty space in a HCP arrangement \(=100\) - Packing efficiency \(=100-74=26 \%\)
CHXII01:THE SOLID STATE
318925
The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is: (Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )
318926
In which pair most efficient packing is present?
1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
Explanation:
Packing efficiency of \(\mathrm{HCP}\) and CCP is \(74 \%\).
CHXII01:THE SOLID STATE
318927
The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\). The value of \({\mathrm{(x-y)}}\) is
318923
Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)
1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
Explanation:
The face centred cubic unit cell contains 4 atoms \(\therefore\) Total volume of atoms \({\rm{ = 4 \times }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}{\rm{ = }}\frac{{{\rm{16}}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}\)
CHXII01:THE SOLID STATE
318924
The empty space left in a hexagonal close packing of spheres in three dimensions is
1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
Explanation:
Empty space in a HCP arrangement \(=100\) - Packing efficiency \(=100-74=26 \%\)
CHXII01:THE SOLID STATE
318925
The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is: (Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )
318926
In which pair most efficient packing is present?
1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
Explanation:
Packing efficiency of \(\mathrm{HCP}\) and CCP is \(74 \%\).
CHXII01:THE SOLID STATE
318927
The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\). The value of \({\mathrm{(x-y)}}\) is
318923
Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)
1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
Explanation:
The face centred cubic unit cell contains 4 atoms \(\therefore\) Total volume of atoms \({\rm{ = 4 \times }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}{\rm{ = }}\frac{{{\rm{16}}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}\)
CHXII01:THE SOLID STATE
318924
The empty space left in a hexagonal close packing of spheres in three dimensions is
1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
Explanation:
Empty space in a HCP arrangement \(=100\) - Packing efficiency \(=100-74=26 \%\)
CHXII01:THE SOLID STATE
318925
The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is: (Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )
318926
In which pair most efficient packing is present?
1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
Explanation:
Packing efficiency of \(\mathrm{HCP}\) and CCP is \(74 \%\).
CHXII01:THE SOLID STATE
318927
The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\). The value of \({\mathrm{(x-y)}}\) is
318923
Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)
1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
Explanation:
The face centred cubic unit cell contains 4 atoms \(\therefore\) Total volume of atoms \({\rm{ = 4 \times }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}{\rm{ = }}\frac{{{\rm{16}}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{3}}}\)
CHXII01:THE SOLID STATE
318924
The empty space left in a hexagonal close packing of spheres in three dimensions is
1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
Explanation:
Empty space in a HCP arrangement \(=100\) - Packing efficiency \(=100-74=26 \%\)
CHXII01:THE SOLID STATE
318925
The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is: (Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )
318926
In which pair most efficient packing is present?
1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
Explanation:
Packing efficiency of \(\mathrm{HCP}\) and CCP is \(74 \%\).
CHXII01:THE SOLID STATE
318927
The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\). The value of \({\mathrm{(x-y)}}\) is