Packing Efficiency
CHXII01:THE SOLID STATE

318923 Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)

1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
CHXII01:THE SOLID STATE

318924 The empty space left in a hexagonal close packing of spheres in three dimensions is

1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
CHXII01:THE SOLID STATE

318925 The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is:
(Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )

1 \({\mathrm{6.6 \times 10^{20}}}\)
2 \({\mathrm{6.6 \times 10^{23}}}\)
3 \({\mathrm{6.6 \times 10^{19}}}\)
4 \({\mathrm{6.6 \times 10^{22}}}\)
CHXII01:THE SOLID STATE

318926 In which pair most efficient packing is present?

1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
CHXII01:THE SOLID STATE

318927 The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\).
The value of \({\mathrm{(x-y)}}\) is

1 68
2 52.4
3 100
4 15.6
CHXII01:THE SOLID STATE

318923 Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)

1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
CHXII01:THE SOLID STATE

318924 The empty space left in a hexagonal close packing of spheres in three dimensions is

1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
CHXII01:THE SOLID STATE

318925 The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is:
(Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )

1 \({\mathrm{6.6 \times 10^{20}}}\)
2 \({\mathrm{6.6 \times 10^{23}}}\)
3 \({\mathrm{6.6 \times 10^{19}}}\)
4 \({\mathrm{6.6 \times 10^{22}}}\)
CHXII01:THE SOLID STATE

318926 In which pair most efficient packing is present?

1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
CHXII01:THE SOLID STATE

318927 The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\).
The value of \({\mathrm{(x-y)}}\) is

1 68
2 52.4
3 100
4 15.6
CHXII01:THE SOLID STATE

318923 Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)

1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
CHXII01:THE SOLID STATE

318924 The empty space left in a hexagonal close packing of spheres in three dimensions is

1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
CHXII01:THE SOLID STATE

318925 The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is:
(Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )

1 \({\mathrm{6.6 \times 10^{20}}}\)
2 \({\mathrm{6.6 \times 10^{23}}}\)
3 \({\mathrm{6.6 \times 10^{19}}}\)
4 \({\mathrm{6.6 \times 10^{22}}}\)
CHXII01:THE SOLID STATE

318926 In which pair most efficient packing is present?

1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
CHXII01:THE SOLID STATE

318927 The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\).
The value of \({\mathrm{(x-y)}}\) is

1 68
2 52.4
3 100
4 15.6
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII01:THE SOLID STATE

318923 Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)

1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
CHXII01:THE SOLID STATE

318924 The empty space left in a hexagonal close packing of spheres in three dimensions is

1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
CHXII01:THE SOLID STATE

318925 The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is:
(Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )

1 \({\mathrm{6.6 \times 10^{20}}}\)
2 \({\mathrm{6.6 \times 10^{23}}}\)
3 \({\mathrm{6.6 \times 10^{19}}}\)
4 \({\mathrm{6.6 \times 10^{22}}}\)
CHXII01:THE SOLID STATE

318926 In which pair most efficient packing is present?

1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
CHXII01:THE SOLID STATE

318927 The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\).
The value of \({\mathrm{(x-y)}}\) is

1 68
2 52.4
3 100
4 15.6
CHXII01:THE SOLID STATE

318923 Total volume of atoms present in a face-centred cubic unit cell of a metal is ( \(r\) is atomic radius)

1 \(\dfrac{12}{3} \pi r^{3}\)
2 \(\dfrac{16}{3} \pi r^{3}\)
3 \(\dfrac{20}{3} \pi r^{3}\)
4 \(\dfrac{24}{3} \pi r^{3}\)
CHXII01:THE SOLID STATE

318924 The empty space left in a hexagonal close packing of spheres in three dimensions is

1 \(64 \%\)
2 \(26 \%\)
3 \(14 \%\)
4 \(52.4 \%\)
CHXII01:THE SOLID STATE

318925 The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is:
(Given density \({\mathrm{=10 \mathrm{~g} \mathrm{~cm}^{-3}}}\) and \({\mathrm{\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}}}\) )

1 \({\mathrm{6.6 \times 10^{20}}}\)
2 \({\mathrm{6.6 \times 10^{23}}}\)
3 \({\mathrm{6.6 \times 10^{19}}}\)
4 \({\mathrm{6.6 \times 10^{22}}}\)
CHXII01:THE SOLID STATE

318926 In which pair most efficient packing is present?

1 \(\mathrm{HCP}\) and \(\mathrm{BCC}\)
2 \(\mathrm{HCP}\) and \(\mathrm{CCP}\)
3 BCC and CCP
4 BCC and simple cubic cell
CHXII01:THE SOLID STATE

318927 The percentage packing efficiency of bcc lattice is \({\mathrm{x\, \%}}\) and the percentage packing efficiency of simple cubic lattice is \({\mathrm{y \%}}\).
The value of \({\mathrm{(x-y)}}\) is

1 68
2 52.4
3 100
4 15.6