Solubility Equilibria of Sparingly Soluble Salts
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI07:EQUILIBRIUM

314927 The solubility product constant \({{\rm{K}}_{{\rm{sp}}}}\) of \(\operatorname{Mg}(\mathrm{OH})_{2}\) is \(9.0 \times 10^{-12}\). If a solution is \({\text{0}}{\text{.01}}\,\,{\text{M}}\) with respect to \(\mathrm{Mg}^{2+}\) ion what is the maximum hydroxide ion concentration which could be present without causing the precipitation of \(\mathrm{Mg}(\mathrm{OH})_{2}\) ?

1 \({\text{1}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
2 \({\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
4 \({\text{3}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314928 What is the minimum volume of water required to dissolve \(1 \mathrm{~g}\) of calcium sulphate at 298K? (Given, For calcium sulphate, \({{\rm{K}}_{{\rm{SP}}}}{\rm{ = 9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\)

1 \(3.02 \mathrm{~L}\)
2 \(2 \mathrm{~L}\)
3 \(4.56 \mathrm{~L}\)
4 \(2.43 \mathrm{~L}\)
CHXI07:EQUILIBRIUM

314929 What is the molar solubility of \(\mathrm{Fe}(\mathrm{OH})_{3}\) if \({{\text{K}}_{{\text{ SP}}}}\)=\({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{?}}\)
(Given \(\left.(3.7)^{1 / 4}=1.386 ;(2.7)^{1 / 4}=1.28\right)\)

1 \(3.16 \times 10^{-10}\)
2 \(1.386 \times 10^{-10}\)
3 \(1.45 \times 10^{-9}\)
4 \(1.28 \times 10^{-11}\)
CHXI07:EQUILIBRIUM

314930 A solution is \(0.1 \mathrm{M}\) with respect to \(\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}\) and \(\mathrm{Al}^{3+}\) which will precipitate at lowest concentration of \(\left[\mathrm{PO}_{4}^{3-}\right]\) when solution of \(\mathrm{Na}_{3} \mathrm{PO}_{4}\) is added?

1 \({\rm{A}}{{\rm{g}}_{\rm{3}}}{\rm{P}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 6}}} \right)\)
2 \({\rm{C}}{{\rm{a}}_{\rm{3}}}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp}}}} = 1 \times {{10}^{ - 33}}} \right)\)
3 \({\rm{M}}{{\rm{g}}_3}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 24}}} \right)\)
4 \({\rm{AlP}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 20}}} \right)\)
CHXI07:EQUILIBRIUM

314927 The solubility product constant \({{\rm{K}}_{{\rm{sp}}}}\) of \(\operatorname{Mg}(\mathrm{OH})_{2}\) is \(9.0 \times 10^{-12}\). If a solution is \({\text{0}}{\text{.01}}\,\,{\text{M}}\) with respect to \(\mathrm{Mg}^{2+}\) ion what is the maximum hydroxide ion concentration which could be present without causing the precipitation of \(\mathrm{Mg}(\mathrm{OH})_{2}\) ?

1 \({\text{1}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
2 \({\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
4 \({\text{3}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314928 What is the minimum volume of water required to dissolve \(1 \mathrm{~g}\) of calcium sulphate at 298K? (Given, For calcium sulphate, \({{\rm{K}}_{{\rm{SP}}}}{\rm{ = 9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\)

1 \(3.02 \mathrm{~L}\)
2 \(2 \mathrm{~L}\)
3 \(4.56 \mathrm{~L}\)
4 \(2.43 \mathrm{~L}\)
CHXI07:EQUILIBRIUM

314929 What is the molar solubility of \(\mathrm{Fe}(\mathrm{OH})_{3}\) if \({{\text{K}}_{{\text{ SP}}}}\)=\({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{?}}\)
(Given \(\left.(3.7)^{1 / 4}=1.386 ;(2.7)^{1 / 4}=1.28\right)\)

1 \(3.16 \times 10^{-10}\)
2 \(1.386 \times 10^{-10}\)
3 \(1.45 \times 10^{-9}\)
4 \(1.28 \times 10^{-11}\)
CHXI07:EQUILIBRIUM

314930 A solution is \(0.1 \mathrm{M}\) with respect to \(\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}\) and \(\mathrm{Al}^{3+}\) which will precipitate at lowest concentration of \(\left[\mathrm{PO}_{4}^{3-}\right]\) when solution of \(\mathrm{Na}_{3} \mathrm{PO}_{4}\) is added?

1 \({\rm{A}}{{\rm{g}}_{\rm{3}}}{\rm{P}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 6}}} \right)\)
2 \({\rm{C}}{{\rm{a}}_{\rm{3}}}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp}}}} = 1 \times {{10}^{ - 33}}} \right)\)
3 \({\rm{M}}{{\rm{g}}_3}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 24}}} \right)\)
4 \({\rm{AlP}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 20}}} \right)\)
CHXI07:EQUILIBRIUM

314927 The solubility product constant \({{\rm{K}}_{{\rm{sp}}}}\) of \(\operatorname{Mg}(\mathrm{OH})_{2}\) is \(9.0 \times 10^{-12}\). If a solution is \({\text{0}}{\text{.01}}\,\,{\text{M}}\) with respect to \(\mathrm{Mg}^{2+}\) ion what is the maximum hydroxide ion concentration which could be present without causing the precipitation of \(\mathrm{Mg}(\mathrm{OH})_{2}\) ?

1 \({\text{1}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
2 \({\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
4 \({\text{3}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314928 What is the minimum volume of water required to dissolve \(1 \mathrm{~g}\) of calcium sulphate at 298K? (Given, For calcium sulphate, \({{\rm{K}}_{{\rm{SP}}}}{\rm{ = 9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\)

1 \(3.02 \mathrm{~L}\)
2 \(2 \mathrm{~L}\)
3 \(4.56 \mathrm{~L}\)
4 \(2.43 \mathrm{~L}\)
CHXI07:EQUILIBRIUM

314929 What is the molar solubility of \(\mathrm{Fe}(\mathrm{OH})_{3}\) if \({{\text{K}}_{{\text{ SP}}}}\)=\({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{?}}\)
(Given \(\left.(3.7)^{1 / 4}=1.386 ;(2.7)^{1 / 4}=1.28\right)\)

1 \(3.16 \times 10^{-10}\)
2 \(1.386 \times 10^{-10}\)
3 \(1.45 \times 10^{-9}\)
4 \(1.28 \times 10^{-11}\)
CHXI07:EQUILIBRIUM

314930 A solution is \(0.1 \mathrm{M}\) with respect to \(\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}\) and \(\mathrm{Al}^{3+}\) which will precipitate at lowest concentration of \(\left[\mathrm{PO}_{4}^{3-}\right]\) when solution of \(\mathrm{Na}_{3} \mathrm{PO}_{4}\) is added?

1 \({\rm{A}}{{\rm{g}}_{\rm{3}}}{\rm{P}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 6}}} \right)\)
2 \({\rm{C}}{{\rm{a}}_{\rm{3}}}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp}}}} = 1 \times {{10}^{ - 33}}} \right)\)
3 \({\rm{M}}{{\rm{g}}_3}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 24}}} \right)\)
4 \({\rm{AlP}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 20}}} \right)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI07:EQUILIBRIUM

314927 The solubility product constant \({{\rm{K}}_{{\rm{sp}}}}\) of \(\operatorname{Mg}(\mathrm{OH})_{2}\) is \(9.0 \times 10^{-12}\). If a solution is \({\text{0}}{\text{.01}}\,\,{\text{M}}\) with respect to \(\mathrm{Mg}^{2+}\) ion what is the maximum hydroxide ion concentration which could be present without causing the precipitation of \(\mathrm{Mg}(\mathrm{OH})_{2}\) ?

1 \({\text{1}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
2 \({\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
4 \({\text{3}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314928 What is the minimum volume of water required to dissolve \(1 \mathrm{~g}\) of calcium sulphate at 298K? (Given, For calcium sulphate, \({{\rm{K}}_{{\rm{SP}}}}{\rm{ = 9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\)

1 \(3.02 \mathrm{~L}\)
2 \(2 \mathrm{~L}\)
3 \(4.56 \mathrm{~L}\)
4 \(2.43 \mathrm{~L}\)
CHXI07:EQUILIBRIUM

314929 What is the molar solubility of \(\mathrm{Fe}(\mathrm{OH})_{3}\) if \({{\text{K}}_{{\text{ SP}}}}\)=\({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{?}}\)
(Given \(\left.(3.7)^{1 / 4}=1.386 ;(2.7)^{1 / 4}=1.28\right)\)

1 \(3.16 \times 10^{-10}\)
2 \(1.386 \times 10^{-10}\)
3 \(1.45 \times 10^{-9}\)
4 \(1.28 \times 10^{-11}\)
CHXI07:EQUILIBRIUM

314930 A solution is \(0.1 \mathrm{M}\) with respect to \(\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}\) and \(\mathrm{Al}^{3+}\) which will precipitate at lowest concentration of \(\left[\mathrm{PO}_{4}^{3-}\right]\) when solution of \(\mathrm{Na}_{3} \mathrm{PO}_{4}\) is added?

1 \({\rm{A}}{{\rm{g}}_{\rm{3}}}{\rm{P}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 6}}} \right)\)
2 \({\rm{C}}{{\rm{a}}_{\rm{3}}}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp}}}} = 1 \times {{10}^{ - 33}}} \right)\)
3 \({\rm{M}}{{\rm{g}}_3}{\left( {{\rm{P}}{{\rm{O}}_{\rm{4}}}} \right)_2}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 24}}} \right)\)
4 \({\rm{AlP}}{{\rm{O}}_{\rm{4}}}\left( {{{\rm{K}}_{{\rm{sp }}}} = 1 \times {{10}^{ - 20}}} \right)\)