Behaviour of Real Gases
CHXI06:STATES OF MATTER

314088 For the non-zero value of force of attraction between gas molecules, gas equation will be

1 \(\mathrm{P V=n R T-\dfrac{n^{2} a}{V}}\)
2 \(\mathrm{P V=n R T+n b P}\)
3 \(\mathrm{P V=n R T}\)
4 \(\mathrm{P=\dfrac{n R T}{V-b}}\)
CHXI06:STATES OF MATTER

314089 Van der Waal's equation for \(\mathrm{0.2 \mathrm{~mol}}\) of a gas is

1 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
2 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{\rm{0}}.{\rm{04}}{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - b}}){\rm{ = 0}}.{\rm{2RT}}\)
3 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{2a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
4 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{04a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
CHXI06:STATES OF MATTER

314090 At relatively high pressure, van der Waals' equation reduces to

1 \({\rm{p V = R T}}\)
2 \({\rm{p V = R T - a / V}}\)
3 \({\rm{pV}} = {\rm{RT}} - {\rm{a}}/{{\rm{V}}^{\rm{2}}}\)
4 \({\rm{pV}} = {\rm{RT}} + {\rm{pb}}\)
CHXI06:STATES OF MATTER

314091 The units of constants \(a\) in van der Waals' equation is

1 \(\mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}\)
2 \(\mathrm{dm}^{3}\) atm \(\mathrm{mol}^{-1}\)
3 \(\mathrm{dm}\) atm \(\mathrm{mol}^{-1}\)
4 atm mol \({ }^{-1}\)
CHXI06:STATES OF MATTER

314088 For the non-zero value of force of attraction between gas molecules, gas equation will be

1 \(\mathrm{P V=n R T-\dfrac{n^{2} a}{V}}\)
2 \(\mathrm{P V=n R T+n b P}\)
3 \(\mathrm{P V=n R T}\)
4 \(\mathrm{P=\dfrac{n R T}{V-b}}\)
CHXI06:STATES OF MATTER

314089 Van der Waal's equation for \(\mathrm{0.2 \mathrm{~mol}}\) of a gas is

1 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
2 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{\rm{0}}.{\rm{04}}{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - b}}){\rm{ = 0}}.{\rm{2RT}}\)
3 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{2a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
4 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{04a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
CHXI06:STATES OF MATTER

314090 At relatively high pressure, van der Waals' equation reduces to

1 \({\rm{p V = R T}}\)
2 \({\rm{p V = R T - a / V}}\)
3 \({\rm{pV}} = {\rm{RT}} - {\rm{a}}/{{\rm{V}}^{\rm{2}}}\)
4 \({\rm{pV}} = {\rm{RT}} + {\rm{pb}}\)
CHXI06:STATES OF MATTER

314091 The units of constants \(a\) in van der Waals' equation is

1 \(\mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}\)
2 \(\mathrm{dm}^{3}\) atm \(\mathrm{mol}^{-1}\)
3 \(\mathrm{dm}\) atm \(\mathrm{mol}^{-1}\)
4 atm mol \({ }^{-1}\)
CHXI06:STATES OF MATTER

314088 For the non-zero value of force of attraction between gas molecules, gas equation will be

1 \(\mathrm{P V=n R T-\dfrac{n^{2} a}{V}}\)
2 \(\mathrm{P V=n R T+n b P}\)
3 \(\mathrm{P V=n R T}\)
4 \(\mathrm{P=\dfrac{n R T}{V-b}}\)
CHXI06:STATES OF MATTER

314089 Van der Waal's equation for \(\mathrm{0.2 \mathrm{~mol}}\) of a gas is

1 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
2 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{\rm{0}}.{\rm{04}}{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - b}}){\rm{ = 0}}.{\rm{2RT}}\)
3 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{2a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
4 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{04a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
CHXI06:STATES OF MATTER

314090 At relatively high pressure, van der Waals' equation reduces to

1 \({\rm{p V = R T}}\)
2 \({\rm{p V = R T - a / V}}\)
3 \({\rm{pV}} = {\rm{RT}} - {\rm{a}}/{{\rm{V}}^{\rm{2}}}\)
4 \({\rm{pV}} = {\rm{RT}} + {\rm{pb}}\)
CHXI06:STATES OF MATTER

314091 The units of constants \(a\) in van der Waals' equation is

1 \(\mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}\)
2 \(\mathrm{dm}^{3}\) atm \(\mathrm{mol}^{-1}\)
3 \(\mathrm{dm}\) atm \(\mathrm{mol}^{-1}\)
4 atm mol \({ }^{-1}\)
CHXI06:STATES OF MATTER

314088 For the non-zero value of force of attraction between gas molecules, gas equation will be

1 \(\mathrm{P V=n R T-\dfrac{n^{2} a}{V}}\)
2 \(\mathrm{P V=n R T+n b P}\)
3 \(\mathrm{P V=n R T}\)
4 \(\mathrm{P=\dfrac{n R T}{V-b}}\)
CHXI06:STATES OF MATTER

314089 Van der Waal's equation for \(\mathrm{0.2 \mathrm{~mol}}\) of a gas is

1 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
2 \(\left( {{\rm{P + }}\frac{{\rm{a}}}{{{\rm{0}}.{\rm{04}}{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - b}}){\rm{ = 0}}.{\rm{2RT}}\)
3 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{2a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
4 \(\left( {{\rm{P + }}\frac{{{\rm{0}}.{\rm{04a}}}}{{{{\rm{V}}^{\rm{2}}}}}} \right) \cdot ({\rm{V - 0}}.{\rm{2b}}){\rm{ = 0}}.{\rm{2RT}}\)
CHXI06:STATES OF MATTER

314090 At relatively high pressure, van der Waals' equation reduces to

1 \({\rm{p V = R T}}\)
2 \({\rm{p V = R T - a / V}}\)
3 \({\rm{pV}} = {\rm{RT}} - {\rm{a}}/{{\rm{V}}^{\rm{2}}}\)
4 \({\rm{pV}} = {\rm{RT}} + {\rm{pb}}\)
CHXI06:STATES OF MATTER

314091 The units of constants \(a\) in van der Waals' equation is

1 \(\mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}\)
2 \(\mathrm{dm}^{3}\) atm \(\mathrm{mol}^{-1}\)
3 \(\mathrm{dm}\) atm \(\mathrm{mol}^{-1}\)
4 atm mol \({ }^{-1}\)