Gibbs Energy Change and Equilibrium
CHXI06:THERMODYNAMICS

369391 \(\begin{array}{*{20}{c}}{{\text{Given}}}&{{\text{S}}_{\text{m}}^{\text{o}}\left[ {{\text{J/}}\left( {{\text{k}}\,{\text{mol}}} \right)} \right]}&{} \\ {{\text{CC}}{{\text{l}}_{{\text{4(l)}}}}}&{{\text{ - 135}}{\text{.4}}}&{{\text{215}}{\text{.4}}} \\ {{\text{CC}}{{\text{l}}_{{\text{4(g)}}}}}&{{\text{ - 103}}{\text{.0}}}&{{\text{308}}{\text{.7}}} \end{array}\)
What is the boiling point of carbon tetrachloride?

1 \(\mathrm{8.25^{\circ} \mathrm{C}}\)
2 \(\mathrm{74.3^{\circ} \mathrm{C}}\)
3 \(\mathrm{92.3^{\circ} \mathrm{C}}\)
4 \(\mathrm{45.8^{\circ} \mathrm{C}}\)
CHXI06:THERMODYNAMICS

369392 For a hypothetical reaction, \({\mathrm{\Delta \mathrm{H}^{\circ}}}\) and \({\mathrm{\Delta \mathrm{S}^{\circ}}}\) are \({\mathrm{-30 \mathrm{~kJ} \mathrm{~mol}^{-1}}}\) and \({\mathrm{-100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}}\) at 300 K . The equilibrium constant for the reaction at 298 K is ____ .

1 1
2 0
3 2
4 0.1
CHXI06:THERMODYNAMICS

369393 Which quantity out of \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) will be zero at equilibrium?

1 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) is always zero at equilibrium
2 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is always zero at equilibrium
3 Both \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) are zero at equilibrium
4 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is zero if \(\mathrm{\mathrm{K} \neq 0}\)
CHXI06:THERMODYNAMICS

369394 The equilibrium constant of a reaction is 0.008 at \(\mathrm{298 \mathrm{~K}}\). The standard free energy change of the reaction at the same temperature is

1 \(\mathrm{+11.96 \mathrm{~kJ}}\)
2 \(\mathrm{-11.96 \mathrm{~kJ}}\)
3 \(\mathrm{-5.43 \mathrm{~kJ}}\)
4 \(\mathrm{-8.46 \mathrm{~kJ}}\)
CHXI06:THERMODYNAMICS

369395 The incorrect expression among the following is:

1 \(\mathrm{\dfrac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T}\)
2 In isothermal process,
\(\rm{w_{\text {reversible }}=-n R T \ln \dfrac{V_{f}}{V_{i}}}\)
3 \(\mathrm{\ln K=\dfrac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}}\)
4 \(\mathrm{K=e^{-\Delta G^{\circ} / R T}}\)
CHXI06:THERMODYNAMICS

369391 \(\begin{array}{*{20}{c}}{{\text{Given}}}&{{\text{S}}_{\text{m}}^{\text{o}}\left[ {{\text{J/}}\left( {{\text{k}}\,{\text{mol}}} \right)} \right]}&{} \\ {{\text{CC}}{{\text{l}}_{{\text{4(l)}}}}}&{{\text{ - 135}}{\text{.4}}}&{{\text{215}}{\text{.4}}} \\ {{\text{CC}}{{\text{l}}_{{\text{4(g)}}}}}&{{\text{ - 103}}{\text{.0}}}&{{\text{308}}{\text{.7}}} \end{array}\)
What is the boiling point of carbon tetrachloride?

1 \(\mathrm{8.25^{\circ} \mathrm{C}}\)
2 \(\mathrm{74.3^{\circ} \mathrm{C}}\)
3 \(\mathrm{92.3^{\circ} \mathrm{C}}\)
4 \(\mathrm{45.8^{\circ} \mathrm{C}}\)
CHXI06:THERMODYNAMICS

369392 For a hypothetical reaction, \({\mathrm{\Delta \mathrm{H}^{\circ}}}\) and \({\mathrm{\Delta \mathrm{S}^{\circ}}}\) are \({\mathrm{-30 \mathrm{~kJ} \mathrm{~mol}^{-1}}}\) and \({\mathrm{-100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}}\) at 300 K . The equilibrium constant for the reaction at 298 K is ____ .

1 1
2 0
3 2
4 0.1
CHXI06:THERMODYNAMICS

369393 Which quantity out of \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) will be zero at equilibrium?

1 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) is always zero at equilibrium
2 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is always zero at equilibrium
3 Both \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) are zero at equilibrium
4 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is zero if \(\mathrm{\mathrm{K} \neq 0}\)
CHXI06:THERMODYNAMICS

369394 The equilibrium constant of a reaction is 0.008 at \(\mathrm{298 \mathrm{~K}}\). The standard free energy change of the reaction at the same temperature is

1 \(\mathrm{+11.96 \mathrm{~kJ}}\)
2 \(\mathrm{-11.96 \mathrm{~kJ}}\)
3 \(\mathrm{-5.43 \mathrm{~kJ}}\)
4 \(\mathrm{-8.46 \mathrm{~kJ}}\)
CHXI06:THERMODYNAMICS

369395 The incorrect expression among the following is:

1 \(\mathrm{\dfrac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T}\)
2 In isothermal process,
\(\rm{w_{\text {reversible }}=-n R T \ln \dfrac{V_{f}}{V_{i}}}\)
3 \(\mathrm{\ln K=\dfrac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}}\)
4 \(\mathrm{K=e^{-\Delta G^{\circ} / R T}}\)
CHXI06:THERMODYNAMICS

369391 \(\begin{array}{*{20}{c}}{{\text{Given}}}&{{\text{S}}_{\text{m}}^{\text{o}}\left[ {{\text{J/}}\left( {{\text{k}}\,{\text{mol}}} \right)} \right]}&{} \\ {{\text{CC}}{{\text{l}}_{{\text{4(l)}}}}}&{{\text{ - 135}}{\text{.4}}}&{{\text{215}}{\text{.4}}} \\ {{\text{CC}}{{\text{l}}_{{\text{4(g)}}}}}&{{\text{ - 103}}{\text{.0}}}&{{\text{308}}{\text{.7}}} \end{array}\)
What is the boiling point of carbon tetrachloride?

1 \(\mathrm{8.25^{\circ} \mathrm{C}}\)
2 \(\mathrm{74.3^{\circ} \mathrm{C}}\)
3 \(\mathrm{92.3^{\circ} \mathrm{C}}\)
4 \(\mathrm{45.8^{\circ} \mathrm{C}}\)
CHXI06:THERMODYNAMICS

369392 For a hypothetical reaction, \({\mathrm{\Delta \mathrm{H}^{\circ}}}\) and \({\mathrm{\Delta \mathrm{S}^{\circ}}}\) are \({\mathrm{-30 \mathrm{~kJ} \mathrm{~mol}^{-1}}}\) and \({\mathrm{-100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}}\) at 300 K . The equilibrium constant for the reaction at 298 K is ____ .

1 1
2 0
3 2
4 0.1
CHXI06:THERMODYNAMICS

369393 Which quantity out of \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) will be zero at equilibrium?

1 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) is always zero at equilibrium
2 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is always zero at equilibrium
3 Both \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) are zero at equilibrium
4 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is zero if \(\mathrm{\mathrm{K} \neq 0}\)
CHXI06:THERMODYNAMICS

369394 The equilibrium constant of a reaction is 0.008 at \(\mathrm{298 \mathrm{~K}}\). The standard free energy change of the reaction at the same temperature is

1 \(\mathrm{+11.96 \mathrm{~kJ}}\)
2 \(\mathrm{-11.96 \mathrm{~kJ}}\)
3 \(\mathrm{-5.43 \mathrm{~kJ}}\)
4 \(\mathrm{-8.46 \mathrm{~kJ}}\)
CHXI06:THERMODYNAMICS

369395 The incorrect expression among the following is:

1 \(\mathrm{\dfrac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T}\)
2 In isothermal process,
\(\rm{w_{\text {reversible }}=-n R T \ln \dfrac{V_{f}}{V_{i}}}\)
3 \(\mathrm{\ln K=\dfrac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}}\)
4 \(\mathrm{K=e^{-\Delta G^{\circ} / R T}}\)
CHXI06:THERMODYNAMICS

369391 \(\begin{array}{*{20}{c}}{{\text{Given}}}&{{\text{S}}_{\text{m}}^{\text{o}}\left[ {{\text{J/}}\left( {{\text{k}}\,{\text{mol}}} \right)} \right]}&{} \\ {{\text{CC}}{{\text{l}}_{{\text{4(l)}}}}}&{{\text{ - 135}}{\text{.4}}}&{{\text{215}}{\text{.4}}} \\ {{\text{CC}}{{\text{l}}_{{\text{4(g)}}}}}&{{\text{ - 103}}{\text{.0}}}&{{\text{308}}{\text{.7}}} \end{array}\)
What is the boiling point of carbon tetrachloride?

1 \(\mathrm{8.25^{\circ} \mathrm{C}}\)
2 \(\mathrm{74.3^{\circ} \mathrm{C}}\)
3 \(\mathrm{92.3^{\circ} \mathrm{C}}\)
4 \(\mathrm{45.8^{\circ} \mathrm{C}}\)
CHXI06:THERMODYNAMICS

369392 For a hypothetical reaction, \({\mathrm{\Delta \mathrm{H}^{\circ}}}\) and \({\mathrm{\Delta \mathrm{S}^{\circ}}}\) are \({\mathrm{-30 \mathrm{~kJ} \mathrm{~mol}^{-1}}}\) and \({\mathrm{-100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}}\) at 300 K . The equilibrium constant for the reaction at 298 K is ____ .

1 1
2 0
3 2
4 0.1
CHXI06:THERMODYNAMICS

369393 Which quantity out of \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) will be zero at equilibrium?

1 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) is always zero at equilibrium
2 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is always zero at equilibrium
3 Both \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) are zero at equilibrium
4 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is zero if \(\mathrm{\mathrm{K} \neq 0}\)
CHXI06:THERMODYNAMICS

369394 The equilibrium constant of a reaction is 0.008 at \(\mathrm{298 \mathrm{~K}}\). The standard free energy change of the reaction at the same temperature is

1 \(\mathrm{+11.96 \mathrm{~kJ}}\)
2 \(\mathrm{-11.96 \mathrm{~kJ}}\)
3 \(\mathrm{-5.43 \mathrm{~kJ}}\)
4 \(\mathrm{-8.46 \mathrm{~kJ}}\)
CHXI06:THERMODYNAMICS

369395 The incorrect expression among the following is:

1 \(\mathrm{\dfrac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T}\)
2 In isothermal process,
\(\rm{w_{\text {reversible }}=-n R T \ln \dfrac{V_{f}}{V_{i}}}\)
3 \(\mathrm{\ln K=\dfrac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}}\)
4 \(\mathrm{K=e^{-\Delta G^{\circ} / R T}}\)
CHXI06:THERMODYNAMICS

369391 \(\begin{array}{*{20}{c}}{{\text{Given}}}&{{\text{S}}_{\text{m}}^{\text{o}}\left[ {{\text{J/}}\left( {{\text{k}}\,{\text{mol}}} \right)} \right]}&{} \\ {{\text{CC}}{{\text{l}}_{{\text{4(l)}}}}}&{{\text{ - 135}}{\text{.4}}}&{{\text{215}}{\text{.4}}} \\ {{\text{CC}}{{\text{l}}_{{\text{4(g)}}}}}&{{\text{ - 103}}{\text{.0}}}&{{\text{308}}{\text{.7}}} \end{array}\)
What is the boiling point of carbon tetrachloride?

1 \(\mathrm{8.25^{\circ} \mathrm{C}}\)
2 \(\mathrm{74.3^{\circ} \mathrm{C}}\)
3 \(\mathrm{92.3^{\circ} \mathrm{C}}\)
4 \(\mathrm{45.8^{\circ} \mathrm{C}}\)
CHXI06:THERMODYNAMICS

369392 For a hypothetical reaction, \({\mathrm{\Delta \mathrm{H}^{\circ}}}\) and \({\mathrm{\Delta \mathrm{S}^{\circ}}}\) are \({\mathrm{-30 \mathrm{~kJ} \mathrm{~mol}^{-1}}}\) and \({\mathrm{-100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}}\) at 300 K . The equilibrium constant for the reaction at 298 K is ____ .

1 1
2 0
3 2
4 0.1
CHXI06:THERMODYNAMICS

369393 Which quantity out of \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) will be zero at equilibrium?

1 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) is always zero at equilibrium
2 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is always zero at equilibrium
3 Both \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}}\) and \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) are zero at equilibrium
4 \(\mathrm{\Delta_{\mathrm{r}} \mathrm{G}^{\circ}}\) is zero if \(\mathrm{\mathrm{K} \neq 0}\)
CHXI06:THERMODYNAMICS

369394 The equilibrium constant of a reaction is 0.008 at \(\mathrm{298 \mathrm{~K}}\). The standard free energy change of the reaction at the same temperature is

1 \(\mathrm{+11.96 \mathrm{~kJ}}\)
2 \(\mathrm{-11.96 \mathrm{~kJ}}\)
3 \(\mathrm{-5.43 \mathrm{~kJ}}\)
4 \(\mathrm{-8.46 \mathrm{~kJ}}\)
CHXI06:THERMODYNAMICS

369395 The incorrect expression among the following is:

1 \(\mathrm{\dfrac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T}\)
2 In isothermal process,
\(\rm{w_{\text {reversible }}=-n R T \ln \dfrac{V_{f}}{V_{i}}}\)
3 \(\mathrm{\ln K=\dfrac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}}\)
4 \(\mathrm{K=e^{-\Delta G^{\circ} / R T}}\)