Gibbs Energy Change and Equilibrium
CHXI06:THERMODYNAMICS

369396 Gibbs energy change \(\mathrm{\Delta \mathrm{G}}\) is related to equilibrium constant ' \(\mathrm{K}\).' as

1 \({\rm{\Delta G^\circ = - RT}}\,{\rm{ln}}\,{\rm{K}}\)
2 \({\rm{\Delta G^\circ = RT}}\,{\rm{ln}}\,{\rm{K}}\)
3 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{RT}}}}{{{\rm{\Delta G^\circ }}}}\)
4 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{\Delta G^\circ }}}}{{{\rm{RT}}}}\)
CHXI06:THERMODYNAMICS

369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be

1 \(\mathrm{1250 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{750 \mathrm{~K}}\)
4 \(\mathrm{1000 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369398 For a particular reversible reaction at temperature T, \(\mathrm{\Delta H}\) and \(\mathrm{\Delta S}\) were found to be both +ve. If \(\mathrm{T_{e}}\) is the temperature at equilibrium, the reaction would be spontaneous when

1 \(\mathrm{T_{e}>T}\)
2 \(\mathrm{T>T_{e}}\)
3 \(\mathrm{T_{e}}\) is 5 times \(\mathrm{\mathrm{T}}\)
4 \(\mathrm{T_{e}=T}\)
CHXI06:THERMODYNAMICS

369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about

1 \(\mathrm{400 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{273 \mathrm{~K}}\)
4 \(\mathrm{373 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369396 Gibbs energy change \(\mathrm{\Delta \mathrm{G}}\) is related to equilibrium constant ' \(\mathrm{K}\).' as

1 \({\rm{\Delta G^\circ = - RT}}\,{\rm{ln}}\,{\rm{K}}\)
2 \({\rm{\Delta G^\circ = RT}}\,{\rm{ln}}\,{\rm{K}}\)
3 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{RT}}}}{{{\rm{\Delta G^\circ }}}}\)
4 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{\Delta G^\circ }}}}{{{\rm{RT}}}}\)
CHXI06:THERMODYNAMICS

369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be

1 \(\mathrm{1250 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{750 \mathrm{~K}}\)
4 \(\mathrm{1000 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369398 For a particular reversible reaction at temperature T, \(\mathrm{\Delta H}\) and \(\mathrm{\Delta S}\) were found to be both +ve. If \(\mathrm{T_{e}}\) is the temperature at equilibrium, the reaction would be spontaneous when

1 \(\mathrm{T_{e}>T}\)
2 \(\mathrm{T>T_{e}}\)
3 \(\mathrm{T_{e}}\) is 5 times \(\mathrm{\mathrm{T}}\)
4 \(\mathrm{T_{e}=T}\)
CHXI06:THERMODYNAMICS

369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about

1 \(\mathrm{400 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{273 \mathrm{~K}}\)
4 \(\mathrm{373 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369396 Gibbs energy change \(\mathrm{\Delta \mathrm{G}}\) is related to equilibrium constant ' \(\mathrm{K}\).' as

1 \({\rm{\Delta G^\circ = - RT}}\,{\rm{ln}}\,{\rm{K}}\)
2 \({\rm{\Delta G^\circ = RT}}\,{\rm{ln}}\,{\rm{K}}\)
3 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{RT}}}}{{{\rm{\Delta G^\circ }}}}\)
4 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{\Delta G^\circ }}}}{{{\rm{RT}}}}\)
CHXI06:THERMODYNAMICS

369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be

1 \(\mathrm{1250 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{750 \mathrm{~K}}\)
4 \(\mathrm{1000 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369398 For a particular reversible reaction at temperature T, \(\mathrm{\Delta H}\) and \(\mathrm{\Delta S}\) were found to be both +ve. If \(\mathrm{T_{e}}\) is the temperature at equilibrium, the reaction would be spontaneous when

1 \(\mathrm{T_{e}>T}\)
2 \(\mathrm{T>T_{e}}\)
3 \(\mathrm{T_{e}}\) is 5 times \(\mathrm{\mathrm{T}}\)
4 \(\mathrm{T_{e}=T}\)
CHXI06:THERMODYNAMICS

369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about

1 \(\mathrm{400 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{273 \mathrm{~K}}\)
4 \(\mathrm{373 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369396 Gibbs energy change \(\mathrm{\Delta \mathrm{G}}\) is related to equilibrium constant ' \(\mathrm{K}\).' as

1 \({\rm{\Delta G^\circ = - RT}}\,{\rm{ln}}\,{\rm{K}}\)
2 \({\rm{\Delta G^\circ = RT}}\,{\rm{ln}}\,{\rm{K}}\)
3 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{RT}}}}{{{\rm{\Delta G^\circ }}}}\)
4 \({\rm{ln}}\,{\rm{K = - }}\frac{{{\rm{\Delta G^\circ }}}}{{{\rm{RT}}}}\)
CHXI06:THERMODYNAMICS

369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be

1 \(\mathrm{1250 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{750 \mathrm{~K}}\)
4 \(\mathrm{1000 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369398 For a particular reversible reaction at temperature T, \(\mathrm{\Delta H}\) and \(\mathrm{\Delta S}\) were found to be both +ve. If \(\mathrm{T_{e}}\) is the temperature at equilibrium, the reaction would be spontaneous when

1 \(\mathrm{T_{e}>T}\)
2 \(\mathrm{T>T_{e}}\)
3 \(\mathrm{T_{e}}\) is 5 times \(\mathrm{\mathrm{T}}\)
4 \(\mathrm{T_{e}=T}\)
CHXI06:THERMODYNAMICS

369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about

1 \(\mathrm{400 \mathrm{~K}}\)
2 \(\mathrm{500 \mathrm{~K}}\)
3 \(\mathrm{273 \mathrm{~K}}\)
4 \(\mathrm{373 \mathrm{~K}}\)