369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be
369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about
369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be
369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about
369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be
369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about
369397 Standard entropy of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y_{3}}\) are 60, 40 and \(\mathrm{50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\), respectively. For the reaction, \(\mathrm{\dfrac{1}{2} X_{2}+\dfrac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}}\), to be at equilibrium, the temperature will be
369399 For a reversible reaction: \(\mathrm{X_{(\mathrm{g})}+3 \mathrm{Y}_{(\mathrm{g})} \rightarrow 2 \mathrm{Z}_{(\mathrm{g})}}\). \(\mathrm{\Delta \mathrm{H}=-40 \mathrm{~kJ}}\), the standard entropies of \(\mathrm{\mathrm{X}, \mathrm{Y}}\) and \(\mathrm{\mathrm{Z}}\) are 60, 40 and \({\rm{50}}\,{\rm{J}}\,{{\rm{K}}^{{\rm{ - 1}}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The temperature at which the above reaction attains equilibrium is about