Spectra
CHXI02:STRUCTURE OF ATOM

307582 Balmer gave an equation for wavelength of visible region of H-spectrum as \({\rm{\lambda = }}\frac{{{\rm{K}}{{\rm{n}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ - 4}}}}\). Where \({\rm{n = }}\) principal quantum number of energy level, \({\rm{K = }}\) constant in terms of R (Rudberg constant). The value of K in terms of R is:

1 \({\rm{R}}\)
2 \(\frac{{\rm{R}}}{{\rm{2}}}\)
3 \(\frac{{\rm{4}}}{{\rm{R}}}\)
4 \(\frac{{\rm{5}}}{{\rm{R}}}\)
CHXI02:STRUCTURE OF ATOM

307583 Which transition of the hydrogen spectrum would have the same wavelength as the Balmer transition, \({\rm{n = 4}}\) to \({\rm{n = 2}}\) of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) spectrum?

1 \({{\rm{n}}_{\rm{2}}}{\rm{ = 2}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
2 \({{\rm{n}}_{\rm{2}}}{\rm{ = 3}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
3 \({{\rm{n}}_{\rm{2}}}{\rm{ = 4}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 2}}\)
4 \({{\rm{n}}_{\rm{1}}}{\rm{ = 2}}{\mkern 1mu} {\mkern 1mu} {\rm{to}}{\mkern 1mu} {\mkern 1mu} {{\rm{n}}_{\rm{1}}}{\rm{ = 3}}\)
CHXI02:STRUCTURE OF ATOM

307584 Wave number of a spectral line for a given transition is x \({\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\) then its value for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) for the same transition is

1 \({\rm{4x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{x/4}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{2x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307585 What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series?

1 \(\mathrm{\dfrac{5 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{36}}\)
2 \(\frac{{{\text{4h}}{{\text{R}}_{\text{H}}}{\text{c}}}}{{\text{3}}}\)
3 \(\mathrm{\dfrac{3 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{4}}\)
4 \(\mathrm{\dfrac{7 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{144}}\)
CHXI02:STRUCTURE OF ATOM

307586 In hydrogen atomic spectrum, a series limit is found at \({\rm{12186}}{\rm{.3}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Then it belong to:

1 Lyman series
2 Balmer series
3 Paschen series
4 Brackett series
CHXI02:STRUCTURE OF ATOM

307582 Balmer gave an equation for wavelength of visible region of H-spectrum as \({\rm{\lambda = }}\frac{{{\rm{K}}{{\rm{n}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ - 4}}}}\). Where \({\rm{n = }}\) principal quantum number of energy level, \({\rm{K = }}\) constant in terms of R (Rudberg constant). The value of K in terms of R is:

1 \({\rm{R}}\)
2 \(\frac{{\rm{R}}}{{\rm{2}}}\)
3 \(\frac{{\rm{4}}}{{\rm{R}}}\)
4 \(\frac{{\rm{5}}}{{\rm{R}}}\)
CHXI02:STRUCTURE OF ATOM

307583 Which transition of the hydrogen spectrum would have the same wavelength as the Balmer transition, \({\rm{n = 4}}\) to \({\rm{n = 2}}\) of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) spectrum?

1 \({{\rm{n}}_{\rm{2}}}{\rm{ = 2}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
2 \({{\rm{n}}_{\rm{2}}}{\rm{ = 3}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
3 \({{\rm{n}}_{\rm{2}}}{\rm{ = 4}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 2}}\)
4 \({{\rm{n}}_{\rm{1}}}{\rm{ = 2}}{\mkern 1mu} {\mkern 1mu} {\rm{to}}{\mkern 1mu} {\mkern 1mu} {{\rm{n}}_{\rm{1}}}{\rm{ = 3}}\)
CHXI02:STRUCTURE OF ATOM

307584 Wave number of a spectral line for a given transition is x \({\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\) then its value for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) for the same transition is

1 \({\rm{4x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{x/4}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{2x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307585 What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series?

1 \(\mathrm{\dfrac{5 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{36}}\)
2 \(\frac{{{\text{4h}}{{\text{R}}_{\text{H}}}{\text{c}}}}{{\text{3}}}\)
3 \(\mathrm{\dfrac{3 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{4}}\)
4 \(\mathrm{\dfrac{7 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{144}}\)
CHXI02:STRUCTURE OF ATOM

307586 In hydrogen atomic spectrum, a series limit is found at \({\rm{12186}}{\rm{.3}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Then it belong to:

1 Lyman series
2 Balmer series
3 Paschen series
4 Brackett series
CHXI02:STRUCTURE OF ATOM

307582 Balmer gave an equation for wavelength of visible region of H-spectrum as \({\rm{\lambda = }}\frac{{{\rm{K}}{{\rm{n}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ - 4}}}}\). Where \({\rm{n = }}\) principal quantum number of energy level, \({\rm{K = }}\) constant in terms of R (Rudberg constant). The value of K in terms of R is:

1 \({\rm{R}}\)
2 \(\frac{{\rm{R}}}{{\rm{2}}}\)
3 \(\frac{{\rm{4}}}{{\rm{R}}}\)
4 \(\frac{{\rm{5}}}{{\rm{R}}}\)
CHXI02:STRUCTURE OF ATOM

307583 Which transition of the hydrogen spectrum would have the same wavelength as the Balmer transition, \({\rm{n = 4}}\) to \({\rm{n = 2}}\) of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) spectrum?

1 \({{\rm{n}}_{\rm{2}}}{\rm{ = 2}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
2 \({{\rm{n}}_{\rm{2}}}{\rm{ = 3}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
3 \({{\rm{n}}_{\rm{2}}}{\rm{ = 4}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 2}}\)
4 \({{\rm{n}}_{\rm{1}}}{\rm{ = 2}}{\mkern 1mu} {\mkern 1mu} {\rm{to}}{\mkern 1mu} {\mkern 1mu} {{\rm{n}}_{\rm{1}}}{\rm{ = 3}}\)
CHXI02:STRUCTURE OF ATOM

307584 Wave number of a spectral line for a given transition is x \({\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\) then its value for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) for the same transition is

1 \({\rm{4x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{x/4}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{2x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307585 What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series?

1 \(\mathrm{\dfrac{5 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{36}}\)
2 \(\frac{{{\text{4h}}{{\text{R}}_{\text{H}}}{\text{c}}}}{{\text{3}}}\)
3 \(\mathrm{\dfrac{3 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{4}}\)
4 \(\mathrm{\dfrac{7 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{144}}\)
CHXI02:STRUCTURE OF ATOM

307586 In hydrogen atomic spectrum, a series limit is found at \({\rm{12186}}{\rm{.3}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Then it belong to:

1 Lyman series
2 Balmer series
3 Paschen series
4 Brackett series
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307582 Balmer gave an equation for wavelength of visible region of H-spectrum as \({\rm{\lambda = }}\frac{{{\rm{K}}{{\rm{n}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ - 4}}}}\). Where \({\rm{n = }}\) principal quantum number of energy level, \({\rm{K = }}\) constant in terms of R (Rudberg constant). The value of K in terms of R is:

1 \({\rm{R}}\)
2 \(\frac{{\rm{R}}}{{\rm{2}}}\)
3 \(\frac{{\rm{4}}}{{\rm{R}}}\)
4 \(\frac{{\rm{5}}}{{\rm{R}}}\)
CHXI02:STRUCTURE OF ATOM

307583 Which transition of the hydrogen spectrum would have the same wavelength as the Balmer transition, \({\rm{n = 4}}\) to \({\rm{n = 2}}\) of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) spectrum?

1 \({{\rm{n}}_{\rm{2}}}{\rm{ = 2}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
2 \({{\rm{n}}_{\rm{2}}}{\rm{ = 3}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
3 \({{\rm{n}}_{\rm{2}}}{\rm{ = 4}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 2}}\)
4 \({{\rm{n}}_{\rm{1}}}{\rm{ = 2}}{\mkern 1mu} {\mkern 1mu} {\rm{to}}{\mkern 1mu} {\mkern 1mu} {{\rm{n}}_{\rm{1}}}{\rm{ = 3}}\)
CHXI02:STRUCTURE OF ATOM

307584 Wave number of a spectral line for a given transition is x \({\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\) then its value for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) for the same transition is

1 \({\rm{4x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{x/4}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{2x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307585 What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series?

1 \(\mathrm{\dfrac{5 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{36}}\)
2 \(\frac{{{\text{4h}}{{\text{R}}_{\text{H}}}{\text{c}}}}{{\text{3}}}\)
3 \(\mathrm{\dfrac{3 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{4}}\)
4 \(\mathrm{\dfrac{7 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{144}}\)
CHXI02:STRUCTURE OF ATOM

307586 In hydrogen atomic spectrum, a series limit is found at \({\rm{12186}}{\rm{.3}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Then it belong to:

1 Lyman series
2 Balmer series
3 Paschen series
4 Brackett series
CHXI02:STRUCTURE OF ATOM

307582 Balmer gave an equation for wavelength of visible region of H-spectrum as \({\rm{\lambda = }}\frac{{{\rm{K}}{{\rm{n}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ - 4}}}}\). Where \({\rm{n = }}\) principal quantum number of energy level, \({\rm{K = }}\) constant in terms of R (Rudberg constant). The value of K in terms of R is:

1 \({\rm{R}}\)
2 \(\frac{{\rm{R}}}{{\rm{2}}}\)
3 \(\frac{{\rm{4}}}{{\rm{R}}}\)
4 \(\frac{{\rm{5}}}{{\rm{R}}}\)
CHXI02:STRUCTURE OF ATOM

307583 Which transition of the hydrogen spectrum would have the same wavelength as the Balmer transition, \({\rm{n = 4}}\) to \({\rm{n = 2}}\) of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) spectrum?

1 \({{\rm{n}}_{\rm{2}}}{\rm{ = 2}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
2 \({{\rm{n}}_{\rm{2}}}{\rm{ = 3}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 1}}\)
3 \({{\rm{n}}_{\rm{2}}}{\rm{ = 4}}\,\,{\rm{to}}\,\,{{\rm{n}}_{\rm{1}}}{\rm{ = 2}}\)
4 \({{\rm{n}}_{\rm{1}}}{\rm{ = 2}}{\mkern 1mu} {\mkern 1mu} {\rm{to}}{\mkern 1mu} {\mkern 1mu} {{\rm{n}}_{\rm{1}}}{\rm{ = 3}}\)
CHXI02:STRUCTURE OF ATOM

307584 Wave number of a spectral line for a given transition is x \({\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\) then its value for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) for the same transition is

1 \({\rm{4x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{x/4}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{2x}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307585 What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series?

1 \(\mathrm{\dfrac{5 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{36}}\)
2 \(\frac{{{\text{4h}}{{\text{R}}_{\text{H}}}{\text{c}}}}{{\text{3}}}\)
3 \(\mathrm{\dfrac{3 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{4}}\)
4 \(\mathrm{\dfrac{7 \mathrm{hR}_{\mathrm{H}} \mathrm{c}}{144}}\)
CHXI02:STRUCTURE OF ATOM

307586 In hydrogen atomic spectrum, a series limit is found at \({\rm{12186}}{\rm{.3}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Then it belong to:

1 Lyman series
2 Balmer series
3 Paschen series
4 Brackett series