Spectra
CHXI02:STRUCTURE OF ATOM

307578 The difference between the wave number of 1st line of Balmer series and the last line of Paschen series for \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion is

1 \(\frac{{\rm{R}}}{{{\rm{36}}}}\)
2 \(\frac{{{\rm{5R}}}}{{{\rm{36}}}}\)
3 \({\rm{4R}}\)
4 \(\frac{{\rm{R}}}{{\rm{4}}}\)
CHXI02:STRUCTURE OF ATOM

307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )

1 \(1.54 \times {10^{15}}{{\rm{s}}^{ - 1}}\)
2 \({\rm{1}}{\rm{.03}} \times {\rm{1}}{{\rm{0}}^{15}}{{\rm{s}}^{{\rm{ - 1}}}}\)
3 \(3.08 \times {10^{15}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(2.00 \times 10^{15} \mathrm{~s}^{-1}\)
CHXI02:STRUCTURE OF ATOM

307580 Wavelength of the first line of Paschen series hydrogen spectrum is \({\rm{(R = 109700c}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{18750}}\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{2854}}\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{3452}}\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{6243}}\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307581 The wave number of the first line in the Balmer series of hydrogen is \({\rm{15200}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). What would be the wave number of the the first line in the lymen series of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) ion?

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{24}}{\rm{.3 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{6}}{\rm{.08 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.313 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307578 The difference between the wave number of 1st line of Balmer series and the last line of Paschen series for \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion is

1 \(\frac{{\rm{R}}}{{{\rm{36}}}}\)
2 \(\frac{{{\rm{5R}}}}{{{\rm{36}}}}\)
3 \({\rm{4R}}\)
4 \(\frac{{\rm{R}}}{{\rm{4}}}\)
CHXI02:STRUCTURE OF ATOM

307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )

1 \(1.54 \times {10^{15}}{{\rm{s}}^{ - 1}}\)
2 \({\rm{1}}{\rm{.03}} \times {\rm{1}}{{\rm{0}}^{15}}{{\rm{s}}^{{\rm{ - 1}}}}\)
3 \(3.08 \times {10^{15}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(2.00 \times 10^{15} \mathrm{~s}^{-1}\)
CHXI02:STRUCTURE OF ATOM

307580 Wavelength of the first line of Paschen series hydrogen spectrum is \({\rm{(R = 109700c}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{18750}}\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{2854}}\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{3452}}\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{6243}}\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307581 The wave number of the first line in the Balmer series of hydrogen is \({\rm{15200}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). What would be the wave number of the the first line in the lymen series of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) ion?

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{24}}{\rm{.3 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{6}}{\rm{.08 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.313 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307578 The difference between the wave number of 1st line of Balmer series and the last line of Paschen series for \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion is

1 \(\frac{{\rm{R}}}{{{\rm{36}}}}\)
2 \(\frac{{{\rm{5R}}}}{{{\rm{36}}}}\)
3 \({\rm{4R}}\)
4 \(\frac{{\rm{R}}}{{\rm{4}}}\)
CHXI02:STRUCTURE OF ATOM

307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )

1 \(1.54 \times {10^{15}}{{\rm{s}}^{ - 1}}\)
2 \({\rm{1}}{\rm{.03}} \times {\rm{1}}{{\rm{0}}^{15}}{{\rm{s}}^{{\rm{ - 1}}}}\)
3 \(3.08 \times {10^{15}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(2.00 \times 10^{15} \mathrm{~s}^{-1}\)
CHXI02:STRUCTURE OF ATOM

307580 Wavelength of the first line of Paschen series hydrogen spectrum is \({\rm{(R = 109700c}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{18750}}\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{2854}}\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{3452}}\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{6243}}\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307581 The wave number of the first line in the Balmer series of hydrogen is \({\rm{15200}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). What would be the wave number of the the first line in the lymen series of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) ion?

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{24}}{\rm{.3 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{6}}{\rm{.08 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.313 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307578 The difference between the wave number of 1st line of Balmer series and the last line of Paschen series for \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion is

1 \(\frac{{\rm{R}}}{{{\rm{36}}}}\)
2 \(\frac{{{\rm{5R}}}}{{{\rm{36}}}}\)
3 \({\rm{4R}}\)
4 \(\frac{{\rm{R}}}{{\rm{4}}}\)
CHXI02:STRUCTURE OF ATOM

307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )

1 \(1.54 \times {10^{15}}{{\rm{s}}^{ - 1}}\)
2 \({\rm{1}}{\rm{.03}} \times {\rm{1}}{{\rm{0}}^{15}}{{\rm{s}}^{{\rm{ - 1}}}}\)
3 \(3.08 \times {10^{15}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(2.00 \times 10^{15} \mathrm{~s}^{-1}\)
CHXI02:STRUCTURE OF ATOM

307580 Wavelength of the first line of Paschen series hydrogen spectrum is \({\rm{(R = 109700c}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{18750}}\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{2854}}\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{3452}}\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{6243}}\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307581 The wave number of the first line in the Balmer series of hydrogen is \({\rm{15200}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). What would be the wave number of the the first line in the lymen series of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) ion?

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
2 \({\rm{24}}{\rm{.3 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
3 \({\rm{6}}{\rm{.08 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.313 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\)