307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )
307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )
307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )
307579 The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom, will be (given, ionisation energy of \(\mathrm{H}=2.18 \times 10^{-18}\) \({\rm{J}}\,{\rm{ato}}{{\rm{m}}^{ - 1}}\) and \(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) )