307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by
307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,
307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by
307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,
307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by
307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,
307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by
307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,