Particle Nature of Electromagnetic Radiation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307391 If KE is plotted against frequency of incident radiation, a straight line is obtained with a slope equal to

1 Planck’s constant
2 Mass of the electron
3 Charge on the electron
4 Threshold frequency
CHXI02:STRUCTURE OF ATOM

307392 The work function for metals X , Y and Z are, respectively 1.92 eV, 2.0 eV and 5.0 eV.
According to Einstein equation, the metal which will emit photoelectrons for a radiation of wavelength \(4000\) \( \mathop {\rm{A}}^{\circ} \) is/are

1 X only
2 X and Y only
3 X, Y and Z
4 X and Z only
CHXI02:STRUCTURE OF ATOM

307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by

1 \({{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
2 \({\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ - }}{{\rm{v}}_{\rm{2}}}\)
3 \({\rm{2}}{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
4 \(\frac{{{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}}}{{\rm{2}}}\)
CHXI02:STRUCTURE OF ATOM

307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,

1 \({\rm{2}}{\rm{.8}}\,{\rm{eV}}\)
2 \({\rm{3}}{\rm{.2}}\,\,{\rm{eV}}\)
3 \({\rm{3}}{\rm{.7}}\,\,{\rm{eV}}\)
4 \({\rm{2}}{\rm{.5}}\,\,{\rm{eV}}\)
CHXI02:STRUCTURE OF ATOM

307391 If KE is plotted against frequency of incident radiation, a straight line is obtained with a slope equal to

1 Planck’s constant
2 Mass of the electron
3 Charge on the electron
4 Threshold frequency
CHXI02:STRUCTURE OF ATOM

307392 The work function for metals X , Y and Z are, respectively 1.92 eV, 2.0 eV and 5.0 eV.
According to Einstein equation, the metal which will emit photoelectrons for a radiation of wavelength \(4000\) \( \mathop {\rm{A}}^{\circ} \) is/are

1 X only
2 X and Y only
3 X, Y and Z
4 X and Z only
CHXI02:STRUCTURE OF ATOM

307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by

1 \({{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
2 \({\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ - }}{{\rm{v}}_{\rm{2}}}\)
3 \({\rm{2}}{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
4 \(\frac{{{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}}}{{\rm{2}}}\)
CHXI02:STRUCTURE OF ATOM

307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,

1 \({\rm{2}}{\rm{.8}}\,{\rm{eV}}\)
2 \({\rm{3}}{\rm{.2}}\,\,{\rm{eV}}\)
3 \({\rm{3}}{\rm{.7}}\,\,{\rm{eV}}\)
4 \({\rm{2}}{\rm{.5}}\,\,{\rm{eV}}\)
CHXI02:STRUCTURE OF ATOM

307391 If KE is plotted against frequency of incident radiation, a straight line is obtained with a slope equal to

1 Planck’s constant
2 Mass of the electron
3 Charge on the electron
4 Threshold frequency
CHXI02:STRUCTURE OF ATOM

307392 The work function for metals X , Y and Z are, respectively 1.92 eV, 2.0 eV and 5.0 eV.
According to Einstein equation, the metal which will emit photoelectrons for a radiation of wavelength \(4000\) \( \mathop {\rm{A}}^{\circ} \) is/are

1 X only
2 X and Y only
3 X, Y and Z
4 X and Z only
CHXI02:STRUCTURE OF ATOM

307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by

1 \({{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
2 \({\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ - }}{{\rm{v}}_{\rm{2}}}\)
3 \({\rm{2}}{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
4 \(\frac{{{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}}}{{\rm{2}}}\)
CHXI02:STRUCTURE OF ATOM

307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,

1 \({\rm{2}}{\rm{.8}}\,{\rm{eV}}\)
2 \({\rm{3}}{\rm{.2}}\,\,{\rm{eV}}\)
3 \({\rm{3}}{\rm{.7}}\,\,{\rm{eV}}\)
4 \({\rm{2}}{\rm{.5}}\,\,{\rm{eV}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307391 If KE is plotted against frequency of incident radiation, a straight line is obtained with a slope equal to

1 Planck’s constant
2 Mass of the electron
3 Charge on the electron
4 Threshold frequency
CHXI02:STRUCTURE OF ATOM

307392 The work function for metals X , Y and Z are, respectively 1.92 eV, 2.0 eV and 5.0 eV.
According to Einstein equation, the metal which will emit photoelectrons for a radiation of wavelength \(4000\) \( \mathop {\rm{A}}^{\circ} \) is/are

1 X only
2 X and Y only
3 X, Y and Z
4 X and Z only
CHXI02:STRUCTURE OF ATOM

307393 Photoelectric emission is observed from a surface for frequencies \({{\rm{v}}_{\rm{1}}}\) and \({{\rm{v}}_{\rm{2}}}\) of incident radiations \({\rm{(}}{{\rm{v}}_{\rm{1}}}{\rm{ > }}{{\rm{v}}_{\rm{2}}}{\rm{)}}{\rm{.}}\) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency \({{\rm{v}}_{\rm{o}}}\) is given by

1 \({{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
2 \({\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ - }}{{\rm{v}}_{\rm{2}}}\)
3 \({\rm{2}}{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}\)
4 \(\frac{{{{\rm{v}}_{\rm{2}}}{\rm{ - }}{{\rm{v}}_{\rm{1}}}}}{{\rm{2}}}\)
CHXI02:STRUCTURE OF ATOM

307394 A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm. The maximum speeds of the photoelectrons corresponding to these wavelengths are \({{\rm{u}}_{\rm{1}}}\) and \({{\rm{u}}_{\rm{2}}}\), respectively. If the ratio \(\frac{{{{\rm{u}}_{\rm{1}}}}}{{{{\rm{u}}_{\rm{2}}}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{1}}}\) and \({\rm{hc = 1240}}\,{\rm{eVnm,}}\) the work function of the metal is nearly,

1 \({\rm{2}}{\rm{.8}}\,{\rm{eV}}\)
2 \({\rm{3}}{\rm{.2}}\,\,{\rm{eV}}\)
3 \({\rm{3}}{\rm{.7}}\,\,{\rm{eV}}\)
4 \({\rm{2}}{\rm{.5}}\,\,{\rm{eV}}\)