Heisenberg's Uncertainity Principle
CHXI02:STRUCTURE OF ATOM

307347 Heisenberg's uncertainty principle is the direct consequence of
(I) Wave nature of radiation
(II) Wave-particle duality of radiation
(III) Particle nature of matter
(IV) Wave-particle duality of matter

1 (I)
2 (III)
3 (II)
4 (II), (IV)
CHXI02:STRUCTURE OF ATOM

307371 The uncertainty in the position of an electron (mass \(=9.1 \times 10^{-28} \mathrm{~g}\) ) moving with a velocity of \(3.0 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1}\) accurate upto \(0.011 \%\) will be

1 \(1.92 \mathrm{~cm}\)
2 \(7.66 \mathrm{~cm}\)
3 \(0.175 \mathrm{~cm}\)
4 \(3.84 \mathrm{~cm}\)
CHXI02:STRUCTURE OF ATOM

307348 The uncertainty in the velocity of particle of mass \(\mathrm{6.626 \times 10^{-28} \mathrm{Kg}}\) is \(\mathrm{10^{-6} \mathrm{~m} / \mathrm{sec}}\). What is the uncertainty in its position in \(\mathrm{\mathrm{m}}\) ?

1 \(\mathrm{\dfrac{1}{2 \pi}}\)
2 \(\mathrm{\dfrac{2.5}{\pi}}\)
3 \(\mathrm{\dfrac{4}{\pi}}\)
4 \(\mathrm{\dfrac{1}{4 \pi}}\)
CHXI02:STRUCTURE OF ATOM

307349 The maximum precision with which the momentum of an electron can be known of the uncertainty is the position of electron \({\rm{ \pm 0}}{\rm{.001}}{{\rm{A}}^{\rm{o}}}\) is \({\rm{5}}{\rm{.27 \times 1}}{{\rm{0}}^{{\rm{ - 22}}}}{\rm{Ns}}{\rm{.}}\) If the momentum value is \({\rm{(h/4\pi }}{{\rm{a}}_{\rm{o}}}{\rm{)}}\) (where \({{\rm{a}}_{\rm{o}}}\) is Bohr’s radius), how many times large as the momentum itself?

1 \({\rm{100}}\)
2 \({\rm{263}}{\rm{.5}}\)
3 \({\rm{300}}\)
4 \({\rm{150}}\)
CHXI02:STRUCTURE OF ATOM

307350 The Heisenberg uncertainity principle will be most significant for which of the following object?

1 Object A of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{kg}}\)
2 Object B of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)
3 Object C of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{mg}}\)
4 Object D of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{kg}}\)
CHXI02:STRUCTURE OF ATOM

307347 Heisenberg's uncertainty principle is the direct consequence of
(I) Wave nature of radiation
(II) Wave-particle duality of radiation
(III) Particle nature of matter
(IV) Wave-particle duality of matter

1 (I)
2 (III)
3 (II)
4 (II), (IV)
CHXI02:STRUCTURE OF ATOM

307371 The uncertainty in the position of an electron (mass \(=9.1 \times 10^{-28} \mathrm{~g}\) ) moving with a velocity of \(3.0 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1}\) accurate upto \(0.011 \%\) will be

1 \(1.92 \mathrm{~cm}\)
2 \(7.66 \mathrm{~cm}\)
3 \(0.175 \mathrm{~cm}\)
4 \(3.84 \mathrm{~cm}\)
CHXI02:STRUCTURE OF ATOM

307348 The uncertainty in the velocity of particle of mass \(\mathrm{6.626 \times 10^{-28} \mathrm{Kg}}\) is \(\mathrm{10^{-6} \mathrm{~m} / \mathrm{sec}}\). What is the uncertainty in its position in \(\mathrm{\mathrm{m}}\) ?

1 \(\mathrm{\dfrac{1}{2 \pi}}\)
2 \(\mathrm{\dfrac{2.5}{\pi}}\)
3 \(\mathrm{\dfrac{4}{\pi}}\)
4 \(\mathrm{\dfrac{1}{4 \pi}}\)
CHXI02:STRUCTURE OF ATOM

307349 The maximum precision with which the momentum of an electron can be known of the uncertainty is the position of electron \({\rm{ \pm 0}}{\rm{.001}}{{\rm{A}}^{\rm{o}}}\) is \({\rm{5}}{\rm{.27 \times 1}}{{\rm{0}}^{{\rm{ - 22}}}}{\rm{Ns}}{\rm{.}}\) If the momentum value is \({\rm{(h/4\pi }}{{\rm{a}}_{\rm{o}}}{\rm{)}}\) (where \({{\rm{a}}_{\rm{o}}}\) is Bohr’s radius), how many times large as the momentum itself?

1 \({\rm{100}}\)
2 \({\rm{263}}{\rm{.5}}\)
3 \({\rm{300}}\)
4 \({\rm{150}}\)
CHXI02:STRUCTURE OF ATOM

307350 The Heisenberg uncertainity principle will be most significant for which of the following object?

1 Object A of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{kg}}\)
2 Object B of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)
3 Object C of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{mg}}\)
4 Object D of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{kg}}\)
CHXI02:STRUCTURE OF ATOM

307347 Heisenberg's uncertainty principle is the direct consequence of
(I) Wave nature of radiation
(II) Wave-particle duality of radiation
(III) Particle nature of matter
(IV) Wave-particle duality of matter

1 (I)
2 (III)
3 (II)
4 (II), (IV)
CHXI02:STRUCTURE OF ATOM

307371 The uncertainty in the position of an electron (mass \(=9.1 \times 10^{-28} \mathrm{~g}\) ) moving with a velocity of \(3.0 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1}\) accurate upto \(0.011 \%\) will be

1 \(1.92 \mathrm{~cm}\)
2 \(7.66 \mathrm{~cm}\)
3 \(0.175 \mathrm{~cm}\)
4 \(3.84 \mathrm{~cm}\)
CHXI02:STRUCTURE OF ATOM

307348 The uncertainty in the velocity of particle of mass \(\mathrm{6.626 \times 10^{-28} \mathrm{Kg}}\) is \(\mathrm{10^{-6} \mathrm{~m} / \mathrm{sec}}\). What is the uncertainty in its position in \(\mathrm{\mathrm{m}}\) ?

1 \(\mathrm{\dfrac{1}{2 \pi}}\)
2 \(\mathrm{\dfrac{2.5}{\pi}}\)
3 \(\mathrm{\dfrac{4}{\pi}}\)
4 \(\mathrm{\dfrac{1}{4 \pi}}\)
CHXI02:STRUCTURE OF ATOM

307349 The maximum precision with which the momentum of an electron can be known of the uncertainty is the position of electron \({\rm{ \pm 0}}{\rm{.001}}{{\rm{A}}^{\rm{o}}}\) is \({\rm{5}}{\rm{.27 \times 1}}{{\rm{0}}^{{\rm{ - 22}}}}{\rm{Ns}}{\rm{.}}\) If the momentum value is \({\rm{(h/4\pi }}{{\rm{a}}_{\rm{o}}}{\rm{)}}\) (where \({{\rm{a}}_{\rm{o}}}\) is Bohr’s radius), how many times large as the momentum itself?

1 \({\rm{100}}\)
2 \({\rm{263}}{\rm{.5}}\)
3 \({\rm{300}}\)
4 \({\rm{150}}\)
CHXI02:STRUCTURE OF ATOM

307350 The Heisenberg uncertainity principle will be most significant for which of the following object?

1 Object A of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{kg}}\)
2 Object B of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)
3 Object C of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{mg}}\)
4 Object D of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{kg}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307347 Heisenberg's uncertainty principle is the direct consequence of
(I) Wave nature of radiation
(II) Wave-particle duality of radiation
(III) Particle nature of matter
(IV) Wave-particle duality of matter

1 (I)
2 (III)
3 (II)
4 (II), (IV)
CHXI02:STRUCTURE OF ATOM

307371 The uncertainty in the position of an electron (mass \(=9.1 \times 10^{-28} \mathrm{~g}\) ) moving with a velocity of \(3.0 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1}\) accurate upto \(0.011 \%\) will be

1 \(1.92 \mathrm{~cm}\)
2 \(7.66 \mathrm{~cm}\)
3 \(0.175 \mathrm{~cm}\)
4 \(3.84 \mathrm{~cm}\)
CHXI02:STRUCTURE OF ATOM

307348 The uncertainty in the velocity of particle of mass \(\mathrm{6.626 \times 10^{-28} \mathrm{Kg}}\) is \(\mathrm{10^{-6} \mathrm{~m} / \mathrm{sec}}\). What is the uncertainty in its position in \(\mathrm{\mathrm{m}}\) ?

1 \(\mathrm{\dfrac{1}{2 \pi}}\)
2 \(\mathrm{\dfrac{2.5}{\pi}}\)
3 \(\mathrm{\dfrac{4}{\pi}}\)
4 \(\mathrm{\dfrac{1}{4 \pi}}\)
CHXI02:STRUCTURE OF ATOM

307349 The maximum precision with which the momentum of an electron can be known of the uncertainty is the position of electron \({\rm{ \pm 0}}{\rm{.001}}{{\rm{A}}^{\rm{o}}}\) is \({\rm{5}}{\rm{.27 \times 1}}{{\rm{0}}^{{\rm{ - 22}}}}{\rm{Ns}}{\rm{.}}\) If the momentum value is \({\rm{(h/4\pi }}{{\rm{a}}_{\rm{o}}}{\rm{)}}\) (where \({{\rm{a}}_{\rm{o}}}\) is Bohr’s radius), how many times large as the momentum itself?

1 \({\rm{100}}\)
2 \({\rm{263}}{\rm{.5}}\)
3 \({\rm{300}}\)
4 \({\rm{150}}\)
CHXI02:STRUCTURE OF ATOM

307350 The Heisenberg uncertainity principle will be most significant for which of the following object?

1 Object A of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{kg}}\)
2 Object B of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)
3 Object C of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{mg}}\)
4 Object D of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{kg}}\)
CHXI02:STRUCTURE OF ATOM

307347 Heisenberg's uncertainty principle is the direct consequence of
(I) Wave nature of radiation
(II) Wave-particle duality of radiation
(III) Particle nature of matter
(IV) Wave-particle duality of matter

1 (I)
2 (III)
3 (II)
4 (II), (IV)
CHXI02:STRUCTURE OF ATOM

307371 The uncertainty in the position of an electron (mass \(=9.1 \times 10^{-28} \mathrm{~g}\) ) moving with a velocity of \(3.0 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1}\) accurate upto \(0.011 \%\) will be

1 \(1.92 \mathrm{~cm}\)
2 \(7.66 \mathrm{~cm}\)
3 \(0.175 \mathrm{~cm}\)
4 \(3.84 \mathrm{~cm}\)
CHXI02:STRUCTURE OF ATOM

307348 The uncertainty in the velocity of particle of mass \(\mathrm{6.626 \times 10^{-28} \mathrm{Kg}}\) is \(\mathrm{10^{-6} \mathrm{~m} / \mathrm{sec}}\). What is the uncertainty in its position in \(\mathrm{\mathrm{m}}\) ?

1 \(\mathrm{\dfrac{1}{2 \pi}}\)
2 \(\mathrm{\dfrac{2.5}{\pi}}\)
3 \(\mathrm{\dfrac{4}{\pi}}\)
4 \(\mathrm{\dfrac{1}{4 \pi}}\)
CHXI02:STRUCTURE OF ATOM

307349 The maximum precision with which the momentum of an electron can be known of the uncertainty is the position of electron \({\rm{ \pm 0}}{\rm{.001}}{{\rm{A}}^{\rm{o}}}\) is \({\rm{5}}{\rm{.27 \times 1}}{{\rm{0}}^{{\rm{ - 22}}}}{\rm{Ns}}{\rm{.}}\) If the momentum value is \({\rm{(h/4\pi }}{{\rm{a}}_{\rm{o}}}{\rm{)}}\) (where \({{\rm{a}}_{\rm{o}}}\) is Bohr’s radius), how many times large as the momentum itself?

1 \({\rm{100}}\)
2 \({\rm{263}}{\rm{.5}}\)
3 \({\rm{300}}\)
4 \({\rm{150}}\)
CHXI02:STRUCTURE OF ATOM

307350 The Heisenberg uncertainity principle will be most significant for which of the following object?

1 Object A of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{kg}}\)
2 Object B of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)
3 Object C of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{mg}}\)
4 Object D of mass \({\rm{9}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{kg}}\)