Heisenberg's Uncertainity Principle
CHXI02:STRUCTURE OF ATOM

307364 If uncertainty in position and velocity are equal then uncertainty in momentum will be

1 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{mh}}{\pi}}\)
2 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{h}}{\pi \mathrm{m}}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m}}\)
4 \(\dfrac{\mathrm{mh}}{4 \pi}\)
CHXI02:STRUCTURE OF ATOM

307365 Heisenberg uncertainty principle is not valid for

1 Moving train
2 Motor car
3 Stationary particles
4 All of these
CHXI02:STRUCTURE OF ATOM

307366 The uncertainty in the momentum of a particle is \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 16}}}}{\rm{g}}\,{\rm{cm}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). With what accuracy can its position be determined?
\({\rm{(h = 6}}{\rm{.625 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
4 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307367 For an electron, if the uncertainty in velocity is \({\rm{\Delta v}}\), the uncertainty in its position \(({\rm{\Delta x}})\) is given by

1 \(\dfrac{\mathrm{hm}}{4 \pi \Delta \mathrm{v}}\)
2 \(\dfrac{4 \pi}{\mathrm{hm} \Delta \mathrm{v}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m} \Delta \mathrm{v}}\)
4 \(\dfrac{4 \pi \mathrm{m}}{\mathrm{h} \Delta \mathrm{v}}\)
CHXI02:STRUCTURE OF ATOM

307364 If uncertainty in position and velocity are equal then uncertainty in momentum will be

1 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{mh}}{\pi}}\)
2 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{h}}{\pi \mathrm{m}}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m}}\)
4 \(\dfrac{\mathrm{mh}}{4 \pi}\)
CHXI02:STRUCTURE OF ATOM

307365 Heisenberg uncertainty principle is not valid for

1 Moving train
2 Motor car
3 Stationary particles
4 All of these
CHXI02:STRUCTURE OF ATOM

307366 The uncertainty in the momentum of a particle is \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 16}}}}{\rm{g}}\,{\rm{cm}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). With what accuracy can its position be determined?
\({\rm{(h = 6}}{\rm{.625 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
4 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307367 For an electron, if the uncertainty in velocity is \({\rm{\Delta v}}\), the uncertainty in its position \(({\rm{\Delta x}})\) is given by

1 \(\dfrac{\mathrm{hm}}{4 \pi \Delta \mathrm{v}}\)
2 \(\dfrac{4 \pi}{\mathrm{hm} \Delta \mathrm{v}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m} \Delta \mathrm{v}}\)
4 \(\dfrac{4 \pi \mathrm{m}}{\mathrm{h} \Delta \mathrm{v}}\)
CHXI02:STRUCTURE OF ATOM

307364 If uncertainty in position and velocity are equal then uncertainty in momentum will be

1 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{mh}}{\pi}}\)
2 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{h}}{\pi \mathrm{m}}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m}}\)
4 \(\dfrac{\mathrm{mh}}{4 \pi}\)
CHXI02:STRUCTURE OF ATOM

307365 Heisenberg uncertainty principle is not valid for

1 Moving train
2 Motor car
3 Stationary particles
4 All of these
CHXI02:STRUCTURE OF ATOM

307366 The uncertainty in the momentum of a particle is \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 16}}}}{\rm{g}}\,{\rm{cm}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). With what accuracy can its position be determined?
\({\rm{(h = 6}}{\rm{.625 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
4 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307367 For an electron, if the uncertainty in velocity is \({\rm{\Delta v}}\), the uncertainty in its position \(({\rm{\Delta x}})\) is given by

1 \(\dfrac{\mathrm{hm}}{4 \pi \Delta \mathrm{v}}\)
2 \(\dfrac{4 \pi}{\mathrm{hm} \Delta \mathrm{v}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m} \Delta \mathrm{v}}\)
4 \(\dfrac{4 \pi \mathrm{m}}{\mathrm{h} \Delta \mathrm{v}}\)
CHXI02:STRUCTURE OF ATOM

307364 If uncertainty in position and velocity are equal then uncertainty in momentum will be

1 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{mh}}{\pi}}\)
2 \(\dfrac{1}{2} \sqrt{\dfrac{\mathrm{h}}{\pi \mathrm{m}}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m}}\)
4 \(\dfrac{\mathrm{mh}}{4 \pi}\)
CHXI02:STRUCTURE OF ATOM

307365 Heisenberg uncertainty principle is not valid for

1 Moving train
2 Motor car
3 Stationary particles
4 All of these
CHXI02:STRUCTURE OF ATOM

307366 The uncertainty in the momentum of a particle is \({\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 16}}}}{\rm{g}}\,{\rm{cm}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). With what accuracy can its position be determined?
\({\rm{(h = 6}}{\rm{.625 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.11 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
4 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307367 For an electron, if the uncertainty in velocity is \({\rm{\Delta v}}\), the uncertainty in its position \(({\rm{\Delta x}})\) is given by

1 \(\dfrac{\mathrm{hm}}{4 \pi \Delta \mathrm{v}}\)
2 \(\dfrac{4 \pi}{\mathrm{hm} \Delta \mathrm{v}}\)
3 \(\dfrac{\mathrm{h}}{4 \pi \mathrm{m} \Delta \mathrm{v}}\)
4 \(\dfrac{4 \pi \mathrm{m}}{\mathrm{h} \Delta \mathrm{v}}\)