Heisenberg's Uncertainity Principle
CHXI02:STRUCTURE OF ATOM

307368 The measurement of the electron position is associated with an uncertainty in momentum, which is equal to \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{g}}\,{\rm{cm}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). The uncertainty in electron velocity is (mass of an electron is \({\rm{9 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\))

1 \({\rm{1 \times 1}}{{\rm{0}}^{\rm{6}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
2 \({\rm{1 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
3 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.1 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307369 The uncertainty in velocity of a particle is \(\frac{{\rm{1}}}{{{\rm{2m}}}}\sqrt {\frac{{\rm{h}}}{{\rm{\pi }}}} \) We can say that

1 Uncertainty in position is twice that of momentum.
2 Only the position of particle is altered by impact of light.
3 Uncertainty in momentum is very large compared to uncertainty in position.
4 Uncertainty in position and momentum are equal.
CHXI02:STRUCTURE OF ATOM

307370 The uncertainties in the position of two particles A and B are 2 nm and 4 nm, respectively. The ratio of uncertainties in the measurement of velocity if mass of B is 1.5 times higher than that of A is

1 \({\rm{1}}\,\,{\rm{:}}\,\,{\rm{4}}\)
2 \(2\,\,{\rm{:}}\,\,1\)
3 \(4\,\,{\rm{:}}\,\,1\)
4 \(3\,\,{\rm{:}}\,\,1\)
CHXI02:STRUCTURE OF ATOM

307368 The measurement of the electron position is associated with an uncertainty in momentum, which is equal to \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{g}}\,{\rm{cm}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). The uncertainty in electron velocity is (mass of an electron is \({\rm{9 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\))

1 \({\rm{1 \times 1}}{{\rm{0}}^{\rm{6}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
2 \({\rm{1 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
3 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.1 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307369 The uncertainty in velocity of a particle is \(\frac{{\rm{1}}}{{{\rm{2m}}}}\sqrt {\frac{{\rm{h}}}{{\rm{\pi }}}} \) We can say that

1 Uncertainty in position is twice that of momentum.
2 Only the position of particle is altered by impact of light.
3 Uncertainty in momentum is very large compared to uncertainty in position.
4 Uncertainty in position and momentum are equal.
CHXI02:STRUCTURE OF ATOM

307370 The uncertainties in the position of two particles A and B are 2 nm and 4 nm, respectively. The ratio of uncertainties in the measurement of velocity if mass of B is 1.5 times higher than that of A is

1 \({\rm{1}}\,\,{\rm{:}}\,\,{\rm{4}}\)
2 \(2\,\,{\rm{:}}\,\,1\)
3 \(4\,\,{\rm{:}}\,\,1\)
4 \(3\,\,{\rm{:}}\,\,1\)
CHXI02:STRUCTURE OF ATOM

307368 The measurement of the electron position is associated with an uncertainty in momentum, which is equal to \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{g}}\,{\rm{cm}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). The uncertainty in electron velocity is (mass of an electron is \({\rm{9 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\))

1 \({\rm{1 \times 1}}{{\rm{0}}^{\rm{6}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
2 \({\rm{1 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
3 \({\rm{1 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.1 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{cm}}\;{{\rm{s}}^{{\rm{ - 1}}}}\)
CHXI02:STRUCTURE OF ATOM

307369 The uncertainty in velocity of a particle is \(\frac{{\rm{1}}}{{{\rm{2m}}}}\sqrt {\frac{{\rm{h}}}{{\rm{\pi }}}} \) We can say that

1 Uncertainty in position is twice that of momentum.
2 Only the position of particle is altered by impact of light.
3 Uncertainty in momentum is very large compared to uncertainty in position.
4 Uncertainty in position and momentum are equal.
CHXI02:STRUCTURE OF ATOM

307370 The uncertainties in the position of two particles A and B are 2 nm and 4 nm, respectively. The ratio of uncertainties in the measurement of velocity if mass of B is 1.5 times higher than that of A is

1 \({\rm{1}}\,\,{\rm{:}}\,\,{\rm{4}}\)
2 \(2\,\,{\rm{:}}\,\,1\)
3 \(4\,\,{\rm{:}}\,\,1\)
4 \(3\,\,{\rm{:}}\,\,1\)