Dual Behaviour of Matter - de Broglie Wave Equation
CHXI02:STRUCTURE OF ATOM

307224 The de Broglie wavelength of a car of mass 1000 kg and velocity 36 km/hr is:

1 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{m}}\)
3 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 31}}}}{\rm{m}}\)
4 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307225 If the de-Broglie wavelength of a particle of mass m is 100 times its velocity, then its value in terms of its mass (m) and Planck’s constant (h) is

1 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
2 \({\rm{10}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
3 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
4 \({\rm{10}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
CHXI02:STRUCTURE OF ATOM

307226 An electron is moving with the velocity equal to 10% of the velocity of light. Its de-Broglie wavelength will be

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{cm}}\)
4 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}{\rm{cm}}\)
CHXI02:STRUCTURE OF ATOM

307227 A body of mass x kg is moving with a velocity of \({\rm{100}}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\) . Its de Broglie wavelength is \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 35}}}}{\rm{m}}\) .Hence x is \({\rm{(h = 6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js)}}\)

1 \({\rm{0}}{\rm{.25}}\,{\rm{kg}}\)
2 \({\rm{0}}{\rm{.15}}\,{\rm{kg}}\)
3 \({\rm{0}}{\rm{.2}}\,{\rm{kg}}\)
4 \({\rm{0}}{\rm{.1}}\,{\rm{kg}}\)
CHXI02:STRUCTURE OF ATOM

307224 The de Broglie wavelength of a car of mass 1000 kg and velocity 36 km/hr is:

1 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{m}}\)
3 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 31}}}}{\rm{m}}\)
4 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307225 If the de-Broglie wavelength of a particle of mass m is 100 times its velocity, then its value in terms of its mass (m) and Planck’s constant (h) is

1 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
2 \({\rm{10}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
3 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
4 \({\rm{10}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
CHXI02:STRUCTURE OF ATOM

307226 An electron is moving with the velocity equal to 10% of the velocity of light. Its de-Broglie wavelength will be

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{cm}}\)
4 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}{\rm{cm}}\)
CHXI02:STRUCTURE OF ATOM

307227 A body of mass x kg is moving with a velocity of \({\rm{100}}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\) . Its de Broglie wavelength is \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 35}}}}{\rm{m}}\) .Hence x is \({\rm{(h = 6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js)}}\)

1 \({\rm{0}}{\rm{.25}}\,{\rm{kg}}\)
2 \({\rm{0}}{\rm{.15}}\,{\rm{kg}}\)
3 \({\rm{0}}{\rm{.2}}\,{\rm{kg}}\)
4 \({\rm{0}}{\rm{.1}}\,{\rm{kg}}\)
CHXI02:STRUCTURE OF ATOM

307224 The de Broglie wavelength of a car of mass 1000 kg and velocity 36 km/hr is:

1 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{m}}\)
3 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 31}}}}{\rm{m}}\)
4 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307225 If the de-Broglie wavelength of a particle of mass m is 100 times its velocity, then its value in terms of its mass (m) and Planck’s constant (h) is

1 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
2 \({\rm{10}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
3 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
4 \({\rm{10}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
CHXI02:STRUCTURE OF ATOM

307226 An electron is moving with the velocity equal to 10% of the velocity of light. Its de-Broglie wavelength will be

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{cm}}\)
4 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}{\rm{cm}}\)
CHXI02:STRUCTURE OF ATOM

307227 A body of mass x kg is moving with a velocity of \({\rm{100}}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\) . Its de Broglie wavelength is \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 35}}}}{\rm{m}}\) .Hence x is \({\rm{(h = 6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js)}}\)

1 \({\rm{0}}{\rm{.25}}\,{\rm{kg}}\)
2 \({\rm{0}}{\rm{.15}}\,{\rm{kg}}\)
3 \({\rm{0}}{\rm{.2}}\,{\rm{kg}}\)
4 \({\rm{0}}{\rm{.1}}\,{\rm{kg}}\)
CHXI02:STRUCTURE OF ATOM

307224 The de Broglie wavelength of a car of mass 1000 kg and velocity 36 km/hr is:

1 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 38}}}}{\rm{m}}\)
3 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 31}}}}{\rm{m}}\)
4 \({\rm{6}}{\rm{.626 \times 1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307225 If the de-Broglie wavelength of a particle of mass m is 100 times its velocity, then its value in terms of its mass (m) and Planck’s constant (h) is

1 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
2 \({\rm{10}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
3 \(\frac{{\rm{1}}}{{{\rm{10}}}}\sqrt {\frac{{\rm{h}}}{{\rm{m}}}} \)
4 \({\rm{10}}\sqrt {\frac{{\rm{m}}}{{\rm{h}}}} \)
CHXI02:STRUCTURE OF ATOM

307226 An electron is moving with the velocity equal to 10% of the velocity of light. Its de-Broglie wavelength will be

1 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 12}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{cm}}\)
3 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{cm}}\)
4 \({\rm{2}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}{\rm{cm}}\)
CHXI02:STRUCTURE OF ATOM

307227 A body of mass x kg is moving with a velocity of \({\rm{100}}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\) . Its de Broglie wavelength is \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 35}}}}{\rm{m}}\) .Hence x is \({\rm{(h = 6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js)}}\)

1 \({\rm{0}}{\rm{.25}}\,{\rm{kg}}\)
2 \({\rm{0}}{\rm{.15}}\,{\rm{kg}}\)
3 \({\rm{0}}{\rm{.2}}\,{\rm{kg}}\)
4 \({\rm{0}}{\rm{.1}}\,{\rm{kg}}\)