Dual Behaviour of Matter - de Broglie Wave Equation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307228 If the radius of the first orbit of hydrogen atom is \(a_{0}\), then de Broglie's wavelength of electron in \(3^{\text {rd }}\) orbit is

1 \(6 \pi \mathrm{a}_{0}\)
2 \(\dfrac{\pi \mathrm{a}_{0}}{6}\)
3 \(3 \pi \mathrm{a}_{\circ}\)
4 \(\dfrac{\pi \mathrm{a}_{0}}{3}\)
CHXI02:STRUCTURE OF ATOM

307229 An electron, a proton and an alpha particle have kinetic energies of 16E, 4E and E respectively. What is the qualitative order of their de broglie wavelengths?

1 \({{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
2 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ > }}{{\rm{\lambda }}_{\rm{e}}}\)
3 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
4 \({{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{p}}}\)
CHXI02:STRUCTURE OF ATOM

307230 In an electron microscope, electrons are accelerated to great velocities. Calculate the wavelength of an electron travelling with a velocity of 7.0 megameters per second. The mass of an electron is \({\rm{9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}{\rm{m}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
3 \({\rm{1}}{\rm{.0m}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307231 A 200g cricket ball is thrown with a speed of \({\rm{3}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{cmse}}{{\rm{c}}^{{\rm{ - 1}}}}\). What will be its de Broglie’s wavelength \(\left[ {{\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}} \right]\)?

1 \({\rm{1}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
3 \({\rm{0}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
4 \({\rm{11}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
CHXI02:STRUCTURE OF ATOM

307228 If the radius of the first orbit of hydrogen atom is \(a_{0}\), then de Broglie's wavelength of electron in \(3^{\text {rd }}\) orbit is

1 \(6 \pi \mathrm{a}_{0}\)
2 \(\dfrac{\pi \mathrm{a}_{0}}{6}\)
3 \(3 \pi \mathrm{a}_{\circ}\)
4 \(\dfrac{\pi \mathrm{a}_{0}}{3}\)
CHXI02:STRUCTURE OF ATOM

307229 An electron, a proton and an alpha particle have kinetic energies of 16E, 4E and E respectively. What is the qualitative order of their de broglie wavelengths?

1 \({{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
2 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ > }}{{\rm{\lambda }}_{\rm{e}}}\)
3 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
4 \({{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{p}}}\)
CHXI02:STRUCTURE OF ATOM

307230 In an electron microscope, electrons are accelerated to great velocities. Calculate the wavelength of an electron travelling with a velocity of 7.0 megameters per second. The mass of an electron is \({\rm{9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}{\rm{m}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
3 \({\rm{1}}{\rm{.0m}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307231 A 200g cricket ball is thrown with a speed of \({\rm{3}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{cmse}}{{\rm{c}}^{{\rm{ - 1}}}}\). What will be its de Broglie’s wavelength \(\left[ {{\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}} \right]\)?

1 \({\rm{1}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
3 \({\rm{0}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
4 \({\rm{11}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
CHXI02:STRUCTURE OF ATOM

307228 If the radius of the first orbit of hydrogen atom is \(a_{0}\), then de Broglie's wavelength of electron in \(3^{\text {rd }}\) orbit is

1 \(6 \pi \mathrm{a}_{0}\)
2 \(\dfrac{\pi \mathrm{a}_{0}}{6}\)
3 \(3 \pi \mathrm{a}_{\circ}\)
4 \(\dfrac{\pi \mathrm{a}_{0}}{3}\)
CHXI02:STRUCTURE OF ATOM

307229 An electron, a proton and an alpha particle have kinetic energies of 16E, 4E and E respectively. What is the qualitative order of their de broglie wavelengths?

1 \({{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
2 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ > }}{{\rm{\lambda }}_{\rm{e}}}\)
3 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
4 \({{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{p}}}\)
CHXI02:STRUCTURE OF ATOM

307230 In an electron microscope, electrons are accelerated to great velocities. Calculate the wavelength of an electron travelling with a velocity of 7.0 megameters per second. The mass of an electron is \({\rm{9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}{\rm{m}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
3 \({\rm{1}}{\rm{.0m}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307231 A 200g cricket ball is thrown with a speed of \({\rm{3}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{cmse}}{{\rm{c}}^{{\rm{ - 1}}}}\). What will be its de Broglie’s wavelength \(\left[ {{\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}} \right]\)?

1 \({\rm{1}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
3 \({\rm{0}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
4 \({\rm{11}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
CHXI02:STRUCTURE OF ATOM

307228 If the radius of the first orbit of hydrogen atom is \(a_{0}\), then de Broglie's wavelength of electron in \(3^{\text {rd }}\) orbit is

1 \(6 \pi \mathrm{a}_{0}\)
2 \(\dfrac{\pi \mathrm{a}_{0}}{6}\)
3 \(3 \pi \mathrm{a}_{\circ}\)
4 \(\dfrac{\pi \mathrm{a}_{0}}{3}\)
CHXI02:STRUCTURE OF ATOM

307229 An electron, a proton and an alpha particle have kinetic energies of 16E, 4E and E respectively. What is the qualitative order of their de broglie wavelengths?

1 \({{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
2 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ = }}{{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ > }}{{\rm{\lambda }}_{\rm{e}}}\)
3 \({{\rm{\lambda }}_{\rm{p}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ > }}{{\rm{\lambda }}_{\rm{\alpha }}}\)
4 \({{\rm{\lambda }}_{\rm{\alpha }}}{\rm{ < }}{{\rm{\lambda }}_{\rm{e}}}{\rm{ < }}{{\rm{\lambda }}_{\rm{p}}}\)
CHXI02:STRUCTURE OF ATOM

307230 In an electron microscope, electrons are accelerated to great velocities. Calculate the wavelength of an electron travelling with a velocity of 7.0 megameters per second. The mass of an electron is \({\rm{9}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 28}}}}{\rm{g}}\)

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}{\rm{m}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
3 \({\rm{1}}{\rm{.0m}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307231 A 200g cricket ball is thrown with a speed of \({\rm{3}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{cmse}}{{\rm{c}}^{{\rm{ - 1}}}}\). What will be its de Broglie’s wavelength \(\left[ {{\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{g}}\,{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}} \right]\)?

1 \({\rm{1}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
2 \({\rm{2}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
3 \({\rm{0}}{\rm{.55 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)
4 \({\rm{11}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 32}}}}{\rm{cm}}\)