Dual Behaviour of Matter - de Broglie Wave Equation
CHXI02:STRUCTURE OF ATOM

307232 The momentum of a moving particle which has de-Broglie wavelength of \({\rm{2}}\mathop {\rm{A}}\limits^ \circ \) is

1 \({\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
2 \({\rm{3}}{\rm{.31 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
3 \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}\,{\rm{m/s}}\)
4 \({\rm{Infinite}}\)
CHXI02:STRUCTURE OF ATOM

307233 At temperature T, the average kinetic energy of any particle is \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{kT}}{\rm{.}}\) The de Broglie wavelength follows the order:

1 Visible photon > Thermal neutron > Thermal electron
2 Thermal proton > Thermal electron > Visible photon
3 Thermal proton > Visible photon > Thermal electron
4 Visible photon > Thermal electron > Thermal neutron
CHXI02:STRUCTURE OF ATOM

307235 If the Planck’s constant \({\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\), the de-Broglie wavelength of a particle having momentum of \({\rm{3}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}{\rm{.m}}{\rm{.}}{{\rm{s}}^{{\rm{ - 1}}}}\) will be

1 \({\rm{0}}{\rm{.002}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{0}}{\rm{.02}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{0}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307236 A ball has a mass of 0.1 kg and its velocity is 40 m/s. The de Broglie wavelength will be

1 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
3 \({\rm{3 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
4 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307237 Two particles A and B are in motion. If the wavelength associated with the particle A is \({\rm{5 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m,}}\) calculate the wavelength of particle B if its momentum is half of A.

1 \({\rm{1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m}}\)
2 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{m}}\)
3 \({\rm{1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{m}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307232 The momentum of a moving particle which has de-Broglie wavelength of \({\rm{2}}\mathop {\rm{A}}\limits^ \circ \) is

1 \({\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
2 \({\rm{3}}{\rm{.31 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
3 \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}\,{\rm{m/s}}\)
4 \({\rm{Infinite}}\)
CHXI02:STRUCTURE OF ATOM

307233 At temperature T, the average kinetic energy of any particle is \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{kT}}{\rm{.}}\) The de Broglie wavelength follows the order:

1 Visible photon > Thermal neutron > Thermal electron
2 Thermal proton > Thermal electron > Visible photon
3 Thermal proton > Visible photon > Thermal electron
4 Visible photon > Thermal electron > Thermal neutron
CHXI02:STRUCTURE OF ATOM

307235 If the Planck’s constant \({\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\), the de-Broglie wavelength of a particle having momentum of \({\rm{3}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}{\rm{.m}}{\rm{.}}{{\rm{s}}^{{\rm{ - 1}}}}\) will be

1 \({\rm{0}}{\rm{.002}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{0}}{\rm{.02}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{0}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307236 A ball has a mass of 0.1 kg and its velocity is 40 m/s. The de Broglie wavelength will be

1 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
3 \({\rm{3 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
4 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307237 Two particles A and B are in motion. If the wavelength associated with the particle A is \({\rm{5 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m,}}\) calculate the wavelength of particle B if its momentum is half of A.

1 \({\rm{1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m}}\)
2 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{m}}\)
3 \({\rm{1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{m}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307232 The momentum of a moving particle which has de-Broglie wavelength of \({\rm{2}}\mathop {\rm{A}}\limits^ \circ \) is

1 \({\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
2 \({\rm{3}}{\rm{.31 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
3 \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}\,{\rm{m/s}}\)
4 \({\rm{Infinite}}\)
CHXI02:STRUCTURE OF ATOM

307233 At temperature T, the average kinetic energy of any particle is \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{kT}}{\rm{.}}\) The de Broglie wavelength follows the order:

1 Visible photon > Thermal neutron > Thermal electron
2 Thermal proton > Thermal electron > Visible photon
3 Thermal proton > Visible photon > Thermal electron
4 Visible photon > Thermal electron > Thermal neutron
CHXI02:STRUCTURE OF ATOM

307235 If the Planck’s constant \({\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\), the de-Broglie wavelength of a particle having momentum of \({\rm{3}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}{\rm{.m}}{\rm{.}}{{\rm{s}}^{{\rm{ - 1}}}}\) will be

1 \({\rm{0}}{\rm{.002}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{0}}{\rm{.02}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{0}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307236 A ball has a mass of 0.1 kg and its velocity is 40 m/s. The de Broglie wavelength will be

1 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
3 \({\rm{3 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
4 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307237 Two particles A and B are in motion. If the wavelength associated with the particle A is \({\rm{5 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m,}}\) calculate the wavelength of particle B if its momentum is half of A.

1 \({\rm{1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m}}\)
2 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{m}}\)
3 \({\rm{1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{m}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307232 The momentum of a moving particle which has de-Broglie wavelength of \({\rm{2}}\mathop {\rm{A}}\limits^ \circ \) is

1 \({\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
2 \({\rm{3}}{\rm{.31 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
3 \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}\,{\rm{m/s}}\)
4 \({\rm{Infinite}}\)
CHXI02:STRUCTURE OF ATOM

307233 At temperature T, the average kinetic energy of any particle is \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{kT}}{\rm{.}}\) The de Broglie wavelength follows the order:

1 Visible photon > Thermal neutron > Thermal electron
2 Thermal proton > Thermal electron > Visible photon
3 Thermal proton > Visible photon > Thermal electron
4 Visible photon > Thermal electron > Thermal neutron
CHXI02:STRUCTURE OF ATOM

307235 If the Planck’s constant \({\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\), the de-Broglie wavelength of a particle having momentum of \({\rm{3}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}{\rm{.m}}{\rm{.}}{{\rm{s}}^{{\rm{ - 1}}}}\) will be

1 \({\rm{0}}{\rm{.002}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{0}}{\rm{.02}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{0}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307236 A ball has a mass of 0.1 kg and its velocity is 40 m/s. The de Broglie wavelength will be

1 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
3 \({\rm{3 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
4 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307237 Two particles A and B are in motion. If the wavelength associated with the particle A is \({\rm{5 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m,}}\) calculate the wavelength of particle B if its momentum is half of A.

1 \({\rm{1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m}}\)
2 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{m}}\)
3 \({\rm{1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{m}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307232 The momentum of a moving particle which has de-Broglie wavelength of \({\rm{2}}\mathop {\rm{A}}\limits^ \circ \) is

1 \({\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
2 \({\rm{3}}{\rm{.31 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}\,{\rm{m/s}}\)
3 \({\rm{6}}{\rm{.62 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}\,{\rm{m/s}}\)
4 \({\rm{Infinite}}\)
CHXI02:STRUCTURE OF ATOM

307233 At temperature T, the average kinetic energy of any particle is \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{kT}}{\rm{.}}\) The de Broglie wavelength follows the order:

1 Visible photon > Thermal neutron > Thermal electron
2 Thermal proton > Thermal electron > Visible photon
3 Thermal proton > Visible photon > Thermal electron
4 Visible photon > Thermal electron > Thermal neutron
CHXI02:STRUCTURE OF ATOM

307235 If the Planck’s constant \({\rm{h = 6}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\), the de-Broglie wavelength of a particle having momentum of \({\rm{3}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 24}}}}{\rm{kg}}{\rm{.m}}{\rm{.}}{{\rm{s}}^{{\rm{ - 1}}}}\) will be

1 \({\rm{0}}{\rm{.002}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
2 \({\rm{0}}{\rm{.02}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
3 \({\rm{0}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
4 \({\rm{2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \)
CHXI02:STRUCTURE OF ATOM

307236 A ball has a mass of 0.1 kg and its velocity is 40 m/s. The de Broglie wavelength will be

1 \({\rm{1}}{\rm{.66 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
2 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
3 \({\rm{3 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
4 \({\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{m}}\)
CHXI02:STRUCTURE OF ATOM

307237 Two particles A and B are in motion. If the wavelength associated with the particle A is \({\rm{5 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m,}}\) calculate the wavelength of particle B if its momentum is half of A.

1 \({\rm{1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{m}}\)
2 \({\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{m}}\)
3 \({\rm{1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{m}}\)
4 \({\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{m}}\)