Bohr's Model for Hydrogen Atom
CHXI02:STRUCTURE OF ATOM

307149 If the ionization potential of an atom is 27V its second excitation potential will be

1 \({\rm{5}}\,{\rm{V}}\)
2 \({\rm{10}}\,{\rm{V}}\)
3 \({\rm{15}}\,{\rm{V}}\)
4 \({\rm{24}}\,{\rm{V}}\)
CHXI02:STRUCTURE OF ATOM

307150 The energy of \({{\rm{e}}^{\rm{ - }}}\) in first orbit of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\). The energy of in first orbit of H is:

1 \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
2 \({\rm{ - 435}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
3 \({\rm{ - 217}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
4 \({\rm{ - 108}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
CHXI02:STRUCTURE OF ATOM

307151 The correct expression derived for the energy of an electron in the \({{\rm{n}}^{th}}\) energy level for H-atom is

1 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
2 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{\rm{n}}{{\rm{h}}^{\rm{2}}}}}\)
3 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
4 \({{\rm{E}}_{\rm{n}}}{\rm{ = - }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307152 The wavelengths of electron waves in two orbits is \(\mathrm{3: 5}\). The ratio of kinetic energies of electron is

1 \(\mathrm{25: 9}\)
2 \(\mathrm{5: 3}\)
3 \(\mathrm{9: 25}\)
4 \(\mathrm{3: 5}\)
CHXI02:STRUCTURE OF ATOM

307149 If the ionization potential of an atom is 27V its second excitation potential will be

1 \({\rm{5}}\,{\rm{V}}\)
2 \({\rm{10}}\,{\rm{V}}\)
3 \({\rm{15}}\,{\rm{V}}\)
4 \({\rm{24}}\,{\rm{V}}\)
CHXI02:STRUCTURE OF ATOM

307150 The energy of \({{\rm{e}}^{\rm{ - }}}\) in first orbit of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\). The energy of in first orbit of H is:

1 \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
2 \({\rm{ - 435}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
3 \({\rm{ - 217}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
4 \({\rm{ - 108}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
CHXI02:STRUCTURE OF ATOM

307151 The correct expression derived for the energy of an electron in the \({{\rm{n}}^{th}}\) energy level for H-atom is

1 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
2 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{\rm{n}}{{\rm{h}}^{\rm{2}}}}}\)
3 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
4 \({{\rm{E}}_{\rm{n}}}{\rm{ = - }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307152 The wavelengths of electron waves in two orbits is \(\mathrm{3: 5}\). The ratio of kinetic energies of electron is

1 \(\mathrm{25: 9}\)
2 \(\mathrm{5: 3}\)
3 \(\mathrm{9: 25}\)
4 \(\mathrm{3: 5}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307149 If the ionization potential of an atom is 27V its second excitation potential will be

1 \({\rm{5}}\,{\rm{V}}\)
2 \({\rm{10}}\,{\rm{V}}\)
3 \({\rm{15}}\,{\rm{V}}\)
4 \({\rm{24}}\,{\rm{V}}\)
CHXI02:STRUCTURE OF ATOM

307150 The energy of \({{\rm{e}}^{\rm{ - }}}\) in first orbit of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\). The energy of in first orbit of H is:

1 \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
2 \({\rm{ - 435}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
3 \({\rm{ - 217}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
4 \({\rm{ - 108}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
CHXI02:STRUCTURE OF ATOM

307151 The correct expression derived for the energy of an electron in the \({{\rm{n}}^{th}}\) energy level for H-atom is

1 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
2 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{\rm{n}}{{\rm{h}}^{\rm{2}}}}}\)
3 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
4 \({{\rm{E}}_{\rm{n}}}{\rm{ = - }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307152 The wavelengths of electron waves in two orbits is \(\mathrm{3: 5}\). The ratio of kinetic energies of electron is

1 \(\mathrm{25: 9}\)
2 \(\mathrm{5: 3}\)
3 \(\mathrm{9: 25}\)
4 \(\mathrm{3: 5}\)
CHXI02:STRUCTURE OF ATOM

307149 If the ionization potential of an atom is 27V its second excitation potential will be

1 \({\rm{5}}\,{\rm{V}}\)
2 \({\rm{10}}\,{\rm{V}}\)
3 \({\rm{15}}\,{\rm{V}}\)
4 \({\rm{24}}\,{\rm{V}}\)
CHXI02:STRUCTURE OF ATOM

307150 The energy of \({{\rm{e}}^{\rm{ - }}}\) in first orbit of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\). The energy of in first orbit of H is:

1 \({\rm{ - 871}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
2 \({\rm{ - 435}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
3 \({\rm{ - 217}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
4 \({\rm{ - 108}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 20}}}}{\rm{J}}\)
CHXI02:STRUCTURE OF ATOM

307151 The correct expression derived for the energy of an electron in the \({{\rm{n}}^{th}}\) energy level for H-atom is

1 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
2 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{\rm{n}}{{\rm{h}}^{\rm{2}}}}}\)
3 \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
4 \({{\rm{E}}_{\rm{n}}}{\rm{ = - }}\frac{{{\rm{2}}{{\rm{\pi }}^{\rm{2}}}{\rm{m}}{{\rm{e}}^{\rm{4}}}}}{{{{\rm{n}}^{\rm{2}}}{{\rm{h}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307152 The wavelengths of electron waves in two orbits is \(\mathrm{3: 5}\). The ratio of kinetic energies of electron is

1 \(\mathrm{25: 9}\)
2 \(\mathrm{5: 3}\)
3 \(\mathrm{9: 25}\)
4 \(\mathrm{3: 5}\)