307153
The energy of hydrogen atom in its ground state is \(-\)13.6 eV . The energy of the level corresponding to the quantum number \({\mathrm{n=5}}\) is
307154
What is the degeneracy of the level of \(\mathrm{H}\)-atom that has energy \(\left( { - \frac{{{{\text{R}}_{\text{H}}}}}{9}} \right)\) ?
1 16
2 9
3 4
4 1
Explanation:
Energy of an electron in the \({{\text{n}}^{{\text{th}}}}\) orbit in terms of \({{\text{R}}_{\text{H}}}\,\) is \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{\text{Z}}^2}}}{{{{\text{n}}^{\text{2}}}}}\) where, \({\text{Z}} = \) atomic number, \({{\text{n}}^2} = \) degeneracy For \(\mathrm{H}\)-atom, \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{(1)}^2}}}{{{n^2}}} \Rightarrow - \frac{{{{\text{R}}_{\text{H}}}}}{9} = - \frac{{{{\text{R}}_{\text{H}}}}}{{{{\text{n}}^2}}}\) \( \Rightarrow {{\text{n}}^2} = 9\)
CHXI02:STRUCTURE OF ATOM
307155
Ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J/atom}}\). The energy of the first stationary state \({\rm{(n = 1)}}\) of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is
307156
The ratio of the energy of electron in second excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) ion to the energy of electron in the first excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) is
1 \({\rm{1}}\,\,{\rm{:}}\,\,{\rm{3}}\)
2 \({\rm{9}}\,\,{\rm{:}}\,\,{\rm{16}}\)
3 \({\rm{1}}\,\,{\rm{:}}\,\,9\)
4 \({\rm{16}}\,\,{\rm{:}}\,\,9\)
Explanation:
\({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{eV}}\) For \({{\rm{2}}^{{\rm{nd}}}}\) excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\;{\rm{n = 3,}}\quad {\rm{Z = 2}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) \({{\rm{E}}_{\rm{3}}}\frac{{{\rm{ - 13}}{\rm{.6 \times (2}}{{\rm{)}}^{\rm{2}}}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 4}}}}{{\rm{9}}}\) For \({{\rm{1}}^{{\rm{st}}}}\) excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{,n = 2}}\) and \({\rm{Z = 4}}\) for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) \({{\rm{E}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{4}}^{\rm{2}}}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 16}}}}{{\rm{4}}}\) \(\frac{{{{\rm{E}}_{\rm{3}}}}}{{{{\rm{E}}_{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{4 \times 4}}}}{{{\rm{16 \times 9}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{9}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXI02:STRUCTURE OF ATOM
307153
The energy of hydrogen atom in its ground state is \(-\)13.6 eV . The energy of the level corresponding to the quantum number \({\mathrm{n=5}}\) is
307154
What is the degeneracy of the level of \(\mathrm{H}\)-atom that has energy \(\left( { - \frac{{{{\text{R}}_{\text{H}}}}}{9}} \right)\) ?
1 16
2 9
3 4
4 1
Explanation:
Energy of an electron in the \({{\text{n}}^{{\text{th}}}}\) orbit in terms of \({{\text{R}}_{\text{H}}}\,\) is \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{\text{Z}}^2}}}{{{{\text{n}}^{\text{2}}}}}\) where, \({\text{Z}} = \) atomic number, \({{\text{n}}^2} = \) degeneracy For \(\mathrm{H}\)-atom, \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{(1)}^2}}}{{{n^2}}} \Rightarrow - \frac{{{{\text{R}}_{\text{H}}}}}{9} = - \frac{{{{\text{R}}_{\text{H}}}}}{{{{\text{n}}^2}}}\) \( \Rightarrow {{\text{n}}^2} = 9\)
CHXI02:STRUCTURE OF ATOM
307155
Ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J/atom}}\). The energy of the first stationary state \({\rm{(n = 1)}}\) of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is
307156
The ratio of the energy of electron in second excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) ion to the energy of electron in the first excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) is
1 \({\rm{1}}\,\,{\rm{:}}\,\,{\rm{3}}\)
2 \({\rm{9}}\,\,{\rm{:}}\,\,{\rm{16}}\)
3 \({\rm{1}}\,\,{\rm{:}}\,\,9\)
4 \({\rm{16}}\,\,{\rm{:}}\,\,9\)
Explanation:
\({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{eV}}\) For \({{\rm{2}}^{{\rm{nd}}}}\) excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\;{\rm{n = 3,}}\quad {\rm{Z = 2}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) \({{\rm{E}}_{\rm{3}}}\frac{{{\rm{ - 13}}{\rm{.6 \times (2}}{{\rm{)}}^{\rm{2}}}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 4}}}}{{\rm{9}}}\) For \({{\rm{1}}^{{\rm{st}}}}\) excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{,n = 2}}\) and \({\rm{Z = 4}}\) for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) \({{\rm{E}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{4}}^{\rm{2}}}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 16}}}}{{\rm{4}}}\) \(\frac{{{{\rm{E}}_{\rm{3}}}}}{{{{\rm{E}}_{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{4 \times 4}}}}{{{\rm{16 \times 9}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{9}}}\)
307153
The energy of hydrogen atom in its ground state is \(-\)13.6 eV . The energy of the level corresponding to the quantum number \({\mathrm{n=5}}\) is
307154
What is the degeneracy of the level of \(\mathrm{H}\)-atom that has energy \(\left( { - \frac{{{{\text{R}}_{\text{H}}}}}{9}} \right)\) ?
1 16
2 9
3 4
4 1
Explanation:
Energy of an electron in the \({{\text{n}}^{{\text{th}}}}\) orbit in terms of \({{\text{R}}_{\text{H}}}\,\) is \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{\text{Z}}^2}}}{{{{\text{n}}^{\text{2}}}}}\) where, \({\text{Z}} = \) atomic number, \({{\text{n}}^2} = \) degeneracy For \(\mathrm{H}\)-atom, \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{(1)}^2}}}{{{n^2}}} \Rightarrow - \frac{{{{\text{R}}_{\text{H}}}}}{9} = - \frac{{{{\text{R}}_{\text{H}}}}}{{{{\text{n}}^2}}}\) \( \Rightarrow {{\text{n}}^2} = 9\)
CHXI02:STRUCTURE OF ATOM
307155
Ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J/atom}}\). The energy of the first stationary state \({\rm{(n = 1)}}\) of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is
307156
The ratio of the energy of electron in second excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) ion to the energy of electron in the first excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) is
1 \({\rm{1}}\,\,{\rm{:}}\,\,{\rm{3}}\)
2 \({\rm{9}}\,\,{\rm{:}}\,\,{\rm{16}}\)
3 \({\rm{1}}\,\,{\rm{:}}\,\,9\)
4 \({\rm{16}}\,\,{\rm{:}}\,\,9\)
Explanation:
\({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{eV}}\) For \({{\rm{2}}^{{\rm{nd}}}}\) excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\;{\rm{n = 3,}}\quad {\rm{Z = 2}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) \({{\rm{E}}_{\rm{3}}}\frac{{{\rm{ - 13}}{\rm{.6 \times (2}}{{\rm{)}}^{\rm{2}}}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 4}}}}{{\rm{9}}}\) For \({{\rm{1}}^{{\rm{st}}}}\) excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{,n = 2}}\) and \({\rm{Z = 4}}\) for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) \({{\rm{E}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{4}}^{\rm{2}}}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 16}}}}{{\rm{4}}}\) \(\frac{{{{\rm{E}}_{\rm{3}}}}}{{{{\rm{E}}_{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{4 \times 4}}}}{{{\rm{16 \times 9}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{9}}}\)
307153
The energy of hydrogen atom in its ground state is \(-\)13.6 eV . The energy of the level corresponding to the quantum number \({\mathrm{n=5}}\) is
307154
What is the degeneracy of the level of \(\mathrm{H}\)-atom that has energy \(\left( { - \frac{{{{\text{R}}_{\text{H}}}}}{9}} \right)\) ?
1 16
2 9
3 4
4 1
Explanation:
Energy of an electron in the \({{\text{n}}^{{\text{th}}}}\) orbit in terms of \({{\text{R}}_{\text{H}}}\,\) is \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{\text{Z}}^2}}}{{{{\text{n}}^{\text{2}}}}}\) where, \({\text{Z}} = \) atomic number, \({{\text{n}}^2} = \) degeneracy For \(\mathrm{H}\)-atom, \({{\text{E}}_{\text{n}}} = - \frac{{{{\text{R}}_{\text{H}}}{{(1)}^2}}}{{{n^2}}} \Rightarrow - \frac{{{{\text{R}}_{\text{H}}}}}{9} = - \frac{{{{\text{R}}_{\text{H}}}}}{{{{\text{n}}^2}}}\) \( \Rightarrow {{\text{n}}^2} = 9\)
CHXI02:STRUCTURE OF ATOM
307155
Ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J/atom}}\). The energy of the first stationary state \({\rm{(n = 1)}}\) of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is
307156
The ratio of the energy of electron in second excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) ion to the energy of electron in the first excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) is
1 \({\rm{1}}\,\,{\rm{:}}\,\,{\rm{3}}\)
2 \({\rm{9}}\,\,{\rm{:}}\,\,{\rm{16}}\)
3 \({\rm{1}}\,\,{\rm{:}}\,\,9\)
4 \({\rm{16}}\,\,{\rm{:}}\,\,9\)
Explanation:
\({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{eV}}\) For \({{\rm{2}}^{{\rm{nd}}}}\) excited state of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}{\rm{,}}\;{\rm{n = 3,}}\quad {\rm{Z = 2}}\) for \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) \({{\rm{E}}_{\rm{3}}}\frac{{{\rm{ - 13}}{\rm{.6 \times (2}}{{\rm{)}}^{\rm{2}}}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 4}}}}{{\rm{9}}}\) For \({{\rm{1}}^{{\rm{st}}}}\) excited state of \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{,n = 2}}\) and \({\rm{Z = 4}}\) for \({\rm{B}}{{\rm{e}}^{{\rm{3 + }}}}\) \({{\rm{E}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times }}{{\rm{4}}^{\rm{2}}}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6 \times 16}}}}{{\rm{4}}}\) \(\frac{{{{\rm{E}}_{\rm{3}}}}}{{{{\rm{E}}_{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{4 \times 4}}}}{{{\rm{16 \times 9}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{9}}}\)