Bohr Model of the Hydrogen Atom
PHXII12:ATOMS

356434 Match the Column-I and Column-II.
Column I
Column II
A
Radius of \({n^{th}}\) orbit
P
\(\frac{{z{e^2}}}{{2{\varepsilon _0}hn}}\)
B
Velocity of electron in \({n^{th}}\) orbit
Q
\(\frac{{ - z{e^4}m}}{{4{n^2}{h^2}\varepsilon _0^2}}\)
C
Potential energy in \({n^{th}}\) orbit
R
\(\frac{{z{e^2}m}}{{8{n^2}{h^2}\varepsilon _0^2}}\)
D
Kinetic energy in \({n^{th}}\) orbit
S
\(\frac{{{\varepsilon _0}{n^2}{h^2}}}{{\pi m{e^2}z}}\)

1 A-S, B-P, C-Q, D-R
2 A-S, B-R, C-P, D-Q
3 A-Q, B-P, C-S, D-R
4 A-S, B-Q, C-P, D-R
PHXII12:ATOMS

356435 An electron revolving in \(n^{\text {th }}\) Bohr orbit has magnetic moment \(\mu_{n}\). If \(\mu_{n} \propto n^{x}\), the value of \(x\) is

1 0
2 2
3 3
4 1
PHXII12:ATOMS

356436 The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom is

1 \(2: - 1\)
2 \(1: - 2\)
3 \(1: - 1\)
4 \(1:1\)
PHXII12:ATOMS

356437 The radius of an electron orbit in a hydrogen atom is of the order of

1 \({10^{ - 8}}\;m\)
2 \({10^{ - 9}}\;m\)
3 \({10^{ - 11}}\;m\)
4 \({10^{ - 10}}\;m\)
PHXII12:ATOMS

356434 Match the Column-I and Column-II.
Column I
Column II
A
Radius of \({n^{th}}\) orbit
P
\(\frac{{z{e^2}}}{{2{\varepsilon _0}hn}}\)
B
Velocity of electron in \({n^{th}}\) orbit
Q
\(\frac{{ - z{e^4}m}}{{4{n^2}{h^2}\varepsilon _0^2}}\)
C
Potential energy in \({n^{th}}\) orbit
R
\(\frac{{z{e^2}m}}{{8{n^2}{h^2}\varepsilon _0^2}}\)
D
Kinetic energy in \({n^{th}}\) orbit
S
\(\frac{{{\varepsilon _0}{n^2}{h^2}}}{{\pi m{e^2}z}}\)

1 A-S, B-P, C-Q, D-R
2 A-S, B-R, C-P, D-Q
3 A-Q, B-P, C-S, D-R
4 A-S, B-Q, C-P, D-R
PHXII12:ATOMS

356435 An electron revolving in \(n^{\text {th }}\) Bohr orbit has magnetic moment \(\mu_{n}\). If \(\mu_{n} \propto n^{x}\), the value of \(x\) is

1 0
2 2
3 3
4 1
PHXII12:ATOMS

356436 The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom is

1 \(2: - 1\)
2 \(1: - 2\)
3 \(1: - 1\)
4 \(1:1\)
PHXII12:ATOMS

356437 The radius of an electron orbit in a hydrogen atom is of the order of

1 \({10^{ - 8}}\;m\)
2 \({10^{ - 9}}\;m\)
3 \({10^{ - 11}}\;m\)
4 \({10^{ - 10}}\;m\)
PHXII12:ATOMS

356434 Match the Column-I and Column-II.
Column I
Column II
A
Radius of \({n^{th}}\) orbit
P
\(\frac{{z{e^2}}}{{2{\varepsilon _0}hn}}\)
B
Velocity of electron in \({n^{th}}\) orbit
Q
\(\frac{{ - z{e^4}m}}{{4{n^2}{h^2}\varepsilon _0^2}}\)
C
Potential energy in \({n^{th}}\) orbit
R
\(\frac{{z{e^2}m}}{{8{n^2}{h^2}\varepsilon _0^2}}\)
D
Kinetic energy in \({n^{th}}\) orbit
S
\(\frac{{{\varepsilon _0}{n^2}{h^2}}}{{\pi m{e^2}z}}\)

1 A-S, B-P, C-Q, D-R
2 A-S, B-R, C-P, D-Q
3 A-Q, B-P, C-S, D-R
4 A-S, B-Q, C-P, D-R
PHXII12:ATOMS

356435 An electron revolving in \(n^{\text {th }}\) Bohr orbit has magnetic moment \(\mu_{n}\). If \(\mu_{n} \propto n^{x}\), the value of \(x\) is

1 0
2 2
3 3
4 1
PHXII12:ATOMS

356436 The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom is

1 \(2: - 1\)
2 \(1: - 2\)
3 \(1: - 1\)
4 \(1:1\)
PHXII12:ATOMS

356437 The radius of an electron orbit in a hydrogen atom is of the order of

1 \({10^{ - 8}}\;m\)
2 \({10^{ - 9}}\;m\)
3 \({10^{ - 11}}\;m\)
4 \({10^{ - 10}}\;m\)
PHXII12:ATOMS

356434 Match the Column-I and Column-II.
Column I
Column II
A
Radius of \({n^{th}}\) orbit
P
\(\frac{{z{e^2}}}{{2{\varepsilon _0}hn}}\)
B
Velocity of electron in \({n^{th}}\) orbit
Q
\(\frac{{ - z{e^4}m}}{{4{n^2}{h^2}\varepsilon _0^2}}\)
C
Potential energy in \({n^{th}}\) orbit
R
\(\frac{{z{e^2}m}}{{8{n^2}{h^2}\varepsilon _0^2}}\)
D
Kinetic energy in \({n^{th}}\) orbit
S
\(\frac{{{\varepsilon _0}{n^2}{h^2}}}{{\pi m{e^2}z}}\)

1 A-S, B-P, C-Q, D-R
2 A-S, B-R, C-P, D-Q
3 A-Q, B-P, C-S, D-R
4 A-S, B-Q, C-P, D-R
PHXII12:ATOMS

356435 An electron revolving in \(n^{\text {th }}\) Bohr orbit has magnetic moment \(\mu_{n}\). If \(\mu_{n} \propto n^{x}\), the value of \(x\) is

1 0
2 2
3 3
4 1
PHXII12:ATOMS

356436 The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom is

1 \(2: - 1\)
2 \(1: - 2\)
3 \(1: - 1\)
4 \(1:1\)
PHXII12:ATOMS

356437 The radius of an electron orbit in a hydrogen atom is of the order of

1 \({10^{ - 8}}\;m\)
2 \({10^{ - 9}}\;m\)
3 \({10^{ - 11}}\;m\)
4 \({10^{ - 10}}\;m\)