EXPONENTS and POWERS
EXPONENTS and POWERS

296387 The value of \(\big[(-2)^{(-2)}\big]^{(-3)}\) is:

1 64
2 32
3 Cannot be determined
4 None of these
EXPONENTS and POWERS

296388 The exponential form of 2 × 2 × 2 × 2 is:

1 2\(^{1}\)
2 2\(^{1}\)
3 2\(^{1}\)
4 16
EXPONENTS and POWERS

296389 Square of \(\big(\frac{-2}{3}\big)\) is:

1 \(\frac{-2}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{-4}{9}\)
4 \(\frac{4}{9}\)
EXPONENTS and POWERS

296390 Simplify the following using law of exponents for a = 2, x = 1, y = 1, z = 1
a\(^{1}\) × a\(^{1}\) × a\(^{1}\)

1 2
2 4
3 8
4 16
EXPONENTS and POWERS

296391 \(\frac{2^{\text{n}+4}-2(2^\text{n}}{2(2^{\text{n}+3})}+2^{-3}\) is equal to

1 \(2^{\text{n}+1}\)
2 \(-2^{\text{n}+1}+\frac{1}{8}\)
3 \(\frac{9}{8}-2^\text{n}\)
4 \(1\)
EXPONENTS and POWERS

296387 The value of \(\big[(-2)^{(-2)}\big]^{(-3)}\) is:

1 64
2 32
3 Cannot be determined
4 None of these
EXPONENTS and POWERS

296388 The exponential form of 2 × 2 × 2 × 2 is:

1 2\(^{1}\)
2 2\(^{1}\)
3 2\(^{1}\)
4 16
EXPONENTS and POWERS

296389 Square of \(\big(\frac{-2}{3}\big)\) is:

1 \(\frac{-2}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{-4}{9}\)
4 \(\frac{4}{9}\)
EXPONENTS and POWERS

296390 Simplify the following using law of exponents for a = 2, x = 1, y = 1, z = 1
a\(^{1}\) × a\(^{1}\) × a\(^{1}\)

1 2
2 4
3 8
4 16
EXPONENTS and POWERS

296391 \(\frac{2^{\text{n}+4}-2(2^\text{n}}{2(2^{\text{n}+3})}+2^{-3}\) is equal to

1 \(2^{\text{n}+1}\)
2 \(-2^{\text{n}+1}+\frac{1}{8}\)
3 \(\frac{9}{8}-2^\text{n}\)
4 \(1\)
EXPONENTS and POWERS

296387 The value of \(\big[(-2)^{(-2)}\big]^{(-3)}\) is:

1 64
2 32
3 Cannot be determined
4 None of these
EXPONENTS and POWERS

296388 The exponential form of 2 × 2 × 2 × 2 is:

1 2\(^{1}\)
2 2\(^{1}\)
3 2\(^{1}\)
4 16
EXPONENTS and POWERS

296389 Square of \(\big(\frac{-2}{3}\big)\) is:

1 \(\frac{-2}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{-4}{9}\)
4 \(\frac{4}{9}\)
EXPONENTS and POWERS

296390 Simplify the following using law of exponents for a = 2, x = 1, y = 1, z = 1
a\(^{1}\) × a\(^{1}\) × a\(^{1}\)

1 2
2 4
3 8
4 16
EXPONENTS and POWERS

296391 \(\frac{2^{\text{n}+4}-2(2^\text{n}}{2(2^{\text{n}+3})}+2^{-3}\) is equal to

1 \(2^{\text{n}+1}\)
2 \(-2^{\text{n}+1}+\frac{1}{8}\)
3 \(\frac{9}{8}-2^\text{n}\)
4 \(1\)
EXPONENTS and POWERS

296387 The value of \(\big[(-2)^{(-2)}\big]^{(-3)}\) is:

1 64
2 32
3 Cannot be determined
4 None of these
EXPONENTS and POWERS

296388 The exponential form of 2 × 2 × 2 × 2 is:

1 2\(^{1}\)
2 2\(^{1}\)
3 2\(^{1}\)
4 16
EXPONENTS and POWERS

296389 Square of \(\big(\frac{-2}{3}\big)\) is:

1 \(\frac{-2}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{-4}{9}\)
4 \(\frac{4}{9}\)
EXPONENTS and POWERS

296390 Simplify the following using law of exponents for a = 2, x = 1, y = 1, z = 1
a\(^{1}\) × a\(^{1}\) × a\(^{1}\)

1 2
2 4
3 8
4 16
EXPONENTS and POWERS

296391 \(\frac{2^{\text{n}+4}-2(2^\text{n}}{2(2^{\text{n}+3})}+2^{-3}\) is equal to

1 \(2^{\text{n}+1}\)
2 \(-2^{\text{n}+1}+\frac{1}{8}\)
3 \(\frac{9}{8}-2^\text{n}\)
4 \(1\)
EXPONENTS and POWERS

296387 The value of \(\big[(-2)^{(-2)}\big]^{(-3)}\) is:

1 64
2 32
3 Cannot be determined
4 None of these
EXPONENTS and POWERS

296388 The exponential form of 2 × 2 × 2 × 2 is:

1 2\(^{1}\)
2 2\(^{1}\)
3 2\(^{1}\)
4 16
EXPONENTS and POWERS

296389 Square of \(\big(\frac{-2}{3}\big)\) is:

1 \(\frac{-2}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{-4}{9}\)
4 \(\frac{4}{9}\)
EXPONENTS and POWERS

296390 Simplify the following using law of exponents for a = 2, x = 1, y = 1, z = 1
a\(^{1}\) × a\(^{1}\) × a\(^{1}\)

1 2
2 4
3 8
4 16
EXPONENTS and POWERS

296391 \(\frac{2^{\text{n}+4}-2(2^\text{n}}{2(2^{\text{n}+3})}+2^{-3}\) is equal to

1 \(2^{\text{n}+1}\)
2 \(-2^{\text{n}+1}+\frac{1}{8}\)
3 \(\frac{9}{8}-2^\text{n}\)
4 \(1\)