Refraction, Law of Refraction Refractive index and Snell's law.
Ray Optics

282087 A pole is vertically submerged in swimming pool, such that is gives a length of shadow 2.15 $m$ within water when sunlight is incident at an angle of $30^{\circ}$ with the surface of water. If swimming pool is filled to a height of $1.5 \mathrm{~m}$, then the height of the pole above the water surface in centimeters is $\left(n_w=4 / 3\right)$

Ans. (50) : Given data,
Shadow length of pole $=2.15 \mathrm{~m}$
Incident angle $=30^{\circ}$
height of water in swimming pool $=1.5 \mathrm{~m}$
Refractive index of water $\left(n_w\right)=4 / 3$
Refractive index of air $\left(\mathrm{n}_{\text {air }}\right)=1$
![original image](https://cdn.mathpix.com/snip/images/SSSsm0_3JRovVC1JPF4r3hIcNsHQKR5ZpPjusd-R7l8.original.fullsize.png)
From snell's law,
$\begin{aligned}
1 \sin 60^{\circ}=\frac{4}{3} \sin r \\
\sin r=\frac{3 \sqrt{3}}{8} \text { this gives } \tan r=\frac{3 \sqrt{3}}{\sqrt{37}}
\end{aligned}$
From the diagram,
$\begin{aligned}
x \sqrt{3}+1.5 \tan r=2.15 \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x=\frac{2.15-1.281}{\sqrt{3}} \\
x=0.50 \mathrm{~m} \\
x=50 \mathrm{~cm}
\end{aligned}$

Ray Optics

282088 A monochromatic light wave with wavelength $\lambda_1$ and frequency $v_1$ in air enters another medium. If the angle of incidence and angle of refraction at the interface are $45^{\circ}$ and $30^{\circ}$ respectively, then the wavelength $\lambda_2$ and frequency $v_2$ of the refracted wave are :

1 $\lambda_2=\lambda_1, v_2=\sqrt{2} v_1$
2 $\lambda_2=\frac{1}{\sqrt{2}} \lambda_1, v_2=v_1$
3 $\lambda_2=\sqrt{2} \lambda_1, v_2=v_1$
4 $\lambda_2=\lambda_1, v_2=\frac{1}{\sqrt{2}} v_1$
Ray Optics

282089 Given below are two statement:
Statement I : If the Brewster's angle for the light propagating from air to glass is $\theta_B$, then the Brewster's angle for the light propagating
from glass to air is $\frac{\pi}{2}-\theta_B$.
Statement II: The Brewster's angle for the light propagating from glass to air is $\tan ^{-1}\left(\mu_{\mathrm{g}}\right)$ where $\mu_{\mathrm{g}}$ is the refractive index of glass.
In the light of the above statement, choose the correct answer from the option given below:

1 Both Statement I and Statement II are true
2 Both Statement I and Statement II are false
3 Statement I is true but Statement II is false
4 Statement I is false but Statement II is true
Ray Optics

282090 The refractive index of crown glass is close to $3 / 2$. If the speed of light in the crown glass will be close to

1 $(3 / 2) \mathrm{c}$
2 $(4 / 9) \mathrm{c}$
3 $(2 / 3) \mathrm{c}$
4 $(9 / 4) \mathrm{c}$
Ray Optics

282087 A pole is vertically submerged in swimming pool, such that is gives a length of shadow 2.15 $m$ within water when sunlight is incident at an angle of $30^{\circ}$ with the surface of water. If swimming pool is filled to a height of $1.5 \mathrm{~m}$, then the height of the pole above the water surface in centimeters is $\left(n_w=4 / 3\right)$

Ans. (50) : Given data,
Shadow length of pole $=2.15 \mathrm{~m}$
Incident angle $=30^{\circ}$
height of water in swimming pool $=1.5 \mathrm{~m}$
Refractive index of water $\left(n_w\right)=4 / 3$
Refractive index of air $\left(\mathrm{n}_{\text {air }}\right)=1$
![original image](https://cdn.mathpix.com/snip/images/SSSsm0_3JRovVC1JPF4r3hIcNsHQKR5ZpPjusd-R7l8.original.fullsize.png)
From snell's law,
$\begin{aligned}
1 \sin 60^{\circ}=\frac{4}{3} \sin r \\
\sin r=\frac{3 \sqrt{3}}{8} \text { this gives } \tan r=\frac{3 \sqrt{3}}{\sqrt{37}}
\end{aligned}$
From the diagram,
$\begin{aligned}
x \sqrt{3}+1.5 \tan r=2.15 \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x=\frac{2.15-1.281}{\sqrt{3}} \\
x=0.50 \mathrm{~m} \\
x=50 \mathrm{~cm}
\end{aligned}$

Ray Optics

282088 A monochromatic light wave with wavelength $\lambda_1$ and frequency $v_1$ in air enters another medium. If the angle of incidence and angle of refraction at the interface are $45^{\circ}$ and $30^{\circ}$ respectively, then the wavelength $\lambda_2$ and frequency $v_2$ of the refracted wave are :

1 $\lambda_2=\lambda_1, v_2=\sqrt{2} v_1$
2 $\lambda_2=\frac{1}{\sqrt{2}} \lambda_1, v_2=v_1$
3 $\lambda_2=\sqrt{2} \lambda_1, v_2=v_1$
4 $\lambda_2=\lambda_1, v_2=\frac{1}{\sqrt{2}} v_1$
Ray Optics

282089 Given below are two statement:
Statement I : If the Brewster's angle for the light propagating from air to glass is $\theta_B$, then the Brewster's angle for the light propagating
from glass to air is $\frac{\pi}{2}-\theta_B$.
Statement II: The Brewster's angle for the light propagating from glass to air is $\tan ^{-1}\left(\mu_{\mathrm{g}}\right)$ where $\mu_{\mathrm{g}}$ is the refractive index of glass.
In the light of the above statement, choose the correct answer from the option given below:

1 Both Statement I and Statement II are true
2 Both Statement I and Statement II are false
3 Statement I is true but Statement II is false
4 Statement I is false but Statement II is true
Ray Optics

282090 The refractive index of crown glass is close to $3 / 2$. If the speed of light in the crown glass will be close to

1 $(3 / 2) \mathrm{c}$
2 $(4 / 9) \mathrm{c}$
3 $(2 / 3) \mathrm{c}$
4 $(9 / 4) \mathrm{c}$
Ray Optics

282087 A pole is vertically submerged in swimming pool, such that is gives a length of shadow 2.15 $m$ within water when sunlight is incident at an angle of $30^{\circ}$ with the surface of water. If swimming pool is filled to a height of $1.5 \mathrm{~m}$, then the height of the pole above the water surface in centimeters is $\left(n_w=4 / 3\right)$

Ans. (50) : Given data,
Shadow length of pole $=2.15 \mathrm{~m}$
Incident angle $=30^{\circ}$
height of water in swimming pool $=1.5 \mathrm{~m}$
Refractive index of water $\left(n_w\right)=4 / 3$
Refractive index of air $\left(\mathrm{n}_{\text {air }}\right)=1$
![original image](https://cdn.mathpix.com/snip/images/SSSsm0_3JRovVC1JPF4r3hIcNsHQKR5ZpPjusd-R7l8.original.fullsize.png)
From snell's law,
$\begin{aligned}
1 \sin 60^{\circ}=\frac{4}{3} \sin r \\
\sin r=\frac{3 \sqrt{3}}{8} \text { this gives } \tan r=\frac{3 \sqrt{3}}{\sqrt{37}}
\end{aligned}$
From the diagram,
$\begin{aligned}
x \sqrt{3}+1.5 \tan r=2.15 \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x=\frac{2.15-1.281}{\sqrt{3}} \\
x=0.50 \mathrm{~m} \\
x=50 \mathrm{~cm}
\end{aligned}$

Ray Optics

282088 A monochromatic light wave with wavelength $\lambda_1$ and frequency $v_1$ in air enters another medium. If the angle of incidence and angle of refraction at the interface are $45^{\circ}$ and $30^{\circ}$ respectively, then the wavelength $\lambda_2$ and frequency $v_2$ of the refracted wave are :

1 $\lambda_2=\lambda_1, v_2=\sqrt{2} v_1$
2 $\lambda_2=\frac{1}{\sqrt{2}} \lambda_1, v_2=v_1$
3 $\lambda_2=\sqrt{2} \lambda_1, v_2=v_1$
4 $\lambda_2=\lambda_1, v_2=\frac{1}{\sqrt{2}} v_1$
Ray Optics

282089 Given below are two statement:
Statement I : If the Brewster's angle for the light propagating from air to glass is $\theta_B$, then the Brewster's angle for the light propagating
from glass to air is $\frac{\pi}{2}-\theta_B$.
Statement II: The Brewster's angle for the light propagating from glass to air is $\tan ^{-1}\left(\mu_{\mathrm{g}}\right)$ where $\mu_{\mathrm{g}}$ is the refractive index of glass.
In the light of the above statement, choose the correct answer from the option given below:

1 Both Statement I and Statement II are true
2 Both Statement I and Statement II are false
3 Statement I is true but Statement II is false
4 Statement I is false but Statement II is true
Ray Optics

282090 The refractive index of crown glass is close to $3 / 2$. If the speed of light in the crown glass will be close to

1 $(3 / 2) \mathrm{c}$
2 $(4 / 9) \mathrm{c}$
3 $(2 / 3) \mathrm{c}$
4 $(9 / 4) \mathrm{c}$
Ray Optics

282087 A pole is vertically submerged in swimming pool, such that is gives a length of shadow 2.15 $m$ within water when sunlight is incident at an angle of $30^{\circ}$ with the surface of water. If swimming pool is filled to a height of $1.5 \mathrm{~m}$, then the height of the pole above the water surface in centimeters is $\left(n_w=4 / 3\right)$

Ans. (50) : Given data,
Shadow length of pole $=2.15 \mathrm{~m}$
Incident angle $=30^{\circ}$
height of water in swimming pool $=1.5 \mathrm{~m}$
Refractive index of water $\left(n_w\right)=4 / 3$
Refractive index of air $\left(\mathrm{n}_{\text {air }}\right)=1$
![original image](https://cdn.mathpix.com/snip/images/SSSsm0_3JRovVC1JPF4r3hIcNsHQKR5ZpPjusd-R7l8.original.fullsize.png)
From snell's law,
$\begin{aligned}
1 \sin 60^{\circ}=\frac{4}{3} \sin r \\
\sin r=\frac{3 \sqrt{3}}{8} \text { this gives } \tan r=\frac{3 \sqrt{3}}{\sqrt{37}}
\end{aligned}$
From the diagram,
$\begin{aligned}
x \sqrt{3}+1.5 \tan r=2.15 \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x \sqrt{3}=2.15-1.5 \times \frac{3 \sqrt{3}}{\sqrt{37}} \\
x=\frac{2.15-1.281}{\sqrt{3}} \\
x=0.50 \mathrm{~m} \\
x=50 \mathrm{~cm}
\end{aligned}$

Ray Optics

282088 A monochromatic light wave with wavelength $\lambda_1$ and frequency $v_1$ in air enters another medium. If the angle of incidence and angle of refraction at the interface are $45^{\circ}$ and $30^{\circ}$ respectively, then the wavelength $\lambda_2$ and frequency $v_2$ of the refracted wave are :

1 $\lambda_2=\lambda_1, v_2=\sqrt{2} v_1$
2 $\lambda_2=\frac{1}{\sqrt{2}} \lambda_1, v_2=v_1$
3 $\lambda_2=\sqrt{2} \lambda_1, v_2=v_1$
4 $\lambda_2=\lambda_1, v_2=\frac{1}{\sqrt{2}} v_1$
Ray Optics

282089 Given below are two statement:
Statement I : If the Brewster's angle for the light propagating from air to glass is $\theta_B$, then the Brewster's angle for the light propagating
from glass to air is $\frac{\pi}{2}-\theta_B$.
Statement II: The Brewster's angle for the light propagating from glass to air is $\tan ^{-1}\left(\mu_{\mathrm{g}}\right)$ where $\mu_{\mathrm{g}}$ is the refractive index of glass.
In the light of the above statement, choose the correct answer from the option given below:

1 Both Statement I and Statement II are true
2 Both Statement I and Statement II are false
3 Statement I is true but Statement II is false
4 Statement I is false but Statement II is true
Ray Optics

282090 The refractive index of crown glass is close to $3 / 2$. If the speed of light in the crown glass will be close to

1 $(3 / 2) \mathrm{c}$
2 $(4 / 9) \mathrm{c}$
3 $(2 / 3) \mathrm{c}$
4 $(9 / 4) \mathrm{c}$