VECTOR PRODUCT (OR) CROSS PRODUCT
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

269499 An electron is moving with speed \(2 \times 10^{5} \mathrm{~m} / \mathrm{s}\) along the positive \(x\)-direction in the presence of magnetic induction \(\vec{B}=(\hat{i}+4 \hat{j}-3 \hat{k}) T\). The magnitude of the force experienced by the electron in \(\mathbf{N}\left(e=1.6 \times 10^{-19} \mathrm{C}\right)(\vec{F}=q(\vec{v} \times \vec{B}))\)

1 \(18 \times 10^{13}\)
2 \(28 \times 10^{-13}\)
3 \(1.6 \times 10^{-13}\)
4 \(73 \times 10^{-13}\)
Rotational Motion

269500 A particle of mass 80 units is moving with a uniform speed\(\mathrm{v}=4 \sqrt{2}\) units in \(X Y\) plane, along a line \(y=x+5\). The magnitude of the angular momentum of the particle about the origin is

1 1600 units
2 \(160 \sqrt{2}\) units
3 \(152 \sqrt{2}\) units
4 \(16 \sqrt{2}\) units
Rotational Motion

269554 The magnitude of two vectors which can be represented in the form \(i+j+(2 x) k\) is \(\sqrt{18}\).Then the unit vector that is perpendicular to these two vectors is

1 \(\frac{-i+j}{\sqrt{2}}\)
2 \(\frac{i-j}{8 \sqrt{2}}\)
3 \(\frac{-i+j}{8}\)
4 \(\frac{-i+j}{2 \sqrt{2}}\)
Rotational Motion

269555 A proton of velocity \((3 \hat{i}+2 \hat{j}) \mathrm{ms}^{-1}\) enters a field of magnetic induction \((2 \hat{i}+3 \hat{k}) T\). The accel eration produced in the proton in (specific charge of proton \(=0.96 \times 10^{8} \mathrm{Ckg}^{-1}\) ) \(\square F=q(\overrightarrow{\mathrm{v}} \times \vec{B}) \square\)

1 \(0.96 \times 10^{8}(6 \hat{i}+9 \hat{j}+4 \hat{k})\)
2 \(0.96 \times 10^{8}(6 \hat{i}-9 \hat{j}-4 \hat{k})\)
3 \(0.96 \times 10^{8}(\hat{i}-\hat{j}-\hat{k})\)
4 \(0.96 \times 10^{8}(5 \hat{i}-9 \hat{j}-4 \hat{k})\)
Rotational Motion

269499 An electron is moving with speed \(2 \times 10^{5} \mathrm{~m} / \mathrm{s}\) along the positive \(x\)-direction in the presence of magnetic induction \(\vec{B}=(\hat{i}+4 \hat{j}-3 \hat{k}) T\). The magnitude of the force experienced by the electron in \(\mathbf{N}\left(e=1.6 \times 10^{-19} \mathrm{C}\right)(\vec{F}=q(\vec{v} \times \vec{B}))\)

1 \(18 \times 10^{13}\)
2 \(28 \times 10^{-13}\)
3 \(1.6 \times 10^{-13}\)
4 \(73 \times 10^{-13}\)
Rotational Motion

269500 A particle of mass 80 units is moving with a uniform speed\(\mathrm{v}=4 \sqrt{2}\) units in \(X Y\) plane, along a line \(y=x+5\). The magnitude of the angular momentum of the particle about the origin is

1 1600 units
2 \(160 \sqrt{2}\) units
3 \(152 \sqrt{2}\) units
4 \(16 \sqrt{2}\) units
Rotational Motion

269554 The magnitude of two vectors which can be represented in the form \(i+j+(2 x) k\) is \(\sqrt{18}\).Then the unit vector that is perpendicular to these two vectors is

1 \(\frac{-i+j}{\sqrt{2}}\)
2 \(\frac{i-j}{8 \sqrt{2}}\)
3 \(\frac{-i+j}{8}\)
4 \(\frac{-i+j}{2 \sqrt{2}}\)
Rotational Motion

269555 A proton of velocity \((3 \hat{i}+2 \hat{j}) \mathrm{ms}^{-1}\) enters a field of magnetic induction \((2 \hat{i}+3 \hat{k}) T\). The accel eration produced in the proton in (specific charge of proton \(=0.96 \times 10^{8} \mathrm{Ckg}^{-1}\) ) \(\square F=q(\overrightarrow{\mathrm{v}} \times \vec{B}) \square\)

1 \(0.96 \times 10^{8}(6 \hat{i}+9 \hat{j}+4 \hat{k})\)
2 \(0.96 \times 10^{8}(6 \hat{i}-9 \hat{j}-4 \hat{k})\)
3 \(0.96 \times 10^{8}(\hat{i}-\hat{j}-\hat{k})\)
4 \(0.96 \times 10^{8}(5 \hat{i}-9 \hat{j}-4 \hat{k})\)
Rotational Motion

269499 An electron is moving with speed \(2 \times 10^{5} \mathrm{~m} / \mathrm{s}\) along the positive \(x\)-direction in the presence of magnetic induction \(\vec{B}=(\hat{i}+4 \hat{j}-3 \hat{k}) T\). The magnitude of the force experienced by the electron in \(\mathbf{N}\left(e=1.6 \times 10^{-19} \mathrm{C}\right)(\vec{F}=q(\vec{v} \times \vec{B}))\)

1 \(18 \times 10^{13}\)
2 \(28 \times 10^{-13}\)
3 \(1.6 \times 10^{-13}\)
4 \(73 \times 10^{-13}\)
Rotational Motion

269500 A particle of mass 80 units is moving with a uniform speed\(\mathrm{v}=4 \sqrt{2}\) units in \(X Y\) plane, along a line \(y=x+5\). The magnitude of the angular momentum of the particle about the origin is

1 1600 units
2 \(160 \sqrt{2}\) units
3 \(152 \sqrt{2}\) units
4 \(16 \sqrt{2}\) units
Rotational Motion

269554 The magnitude of two vectors which can be represented in the form \(i+j+(2 x) k\) is \(\sqrt{18}\).Then the unit vector that is perpendicular to these two vectors is

1 \(\frac{-i+j}{\sqrt{2}}\)
2 \(\frac{i-j}{8 \sqrt{2}}\)
3 \(\frac{-i+j}{8}\)
4 \(\frac{-i+j}{2 \sqrt{2}}\)
Rotational Motion

269555 A proton of velocity \((3 \hat{i}+2 \hat{j}) \mathrm{ms}^{-1}\) enters a field of magnetic induction \((2 \hat{i}+3 \hat{k}) T\). The accel eration produced in the proton in (specific charge of proton \(=0.96 \times 10^{8} \mathrm{Ckg}^{-1}\) ) \(\square F=q(\overrightarrow{\mathrm{v}} \times \vec{B}) \square\)

1 \(0.96 \times 10^{8}(6 \hat{i}+9 \hat{j}+4 \hat{k})\)
2 \(0.96 \times 10^{8}(6 \hat{i}-9 \hat{j}-4 \hat{k})\)
3 \(0.96 \times 10^{8}(\hat{i}-\hat{j}-\hat{k})\)
4 \(0.96 \times 10^{8}(5 \hat{i}-9 \hat{j}-4 \hat{k})\)
Rotational Motion

269499 An electron is moving with speed \(2 \times 10^{5} \mathrm{~m} / \mathrm{s}\) along the positive \(x\)-direction in the presence of magnetic induction \(\vec{B}=(\hat{i}+4 \hat{j}-3 \hat{k}) T\). The magnitude of the force experienced by the electron in \(\mathbf{N}\left(e=1.6 \times 10^{-19} \mathrm{C}\right)(\vec{F}=q(\vec{v} \times \vec{B}))\)

1 \(18 \times 10^{13}\)
2 \(28 \times 10^{-13}\)
3 \(1.6 \times 10^{-13}\)
4 \(73 \times 10^{-13}\)
Rotational Motion

269500 A particle of mass 80 units is moving with a uniform speed\(\mathrm{v}=4 \sqrt{2}\) units in \(X Y\) plane, along a line \(y=x+5\). The magnitude of the angular momentum of the particle about the origin is

1 1600 units
2 \(160 \sqrt{2}\) units
3 \(152 \sqrt{2}\) units
4 \(16 \sqrt{2}\) units
Rotational Motion

269554 The magnitude of two vectors which can be represented in the form \(i+j+(2 x) k\) is \(\sqrt{18}\).Then the unit vector that is perpendicular to these two vectors is

1 \(\frac{-i+j}{\sqrt{2}}\)
2 \(\frac{i-j}{8 \sqrt{2}}\)
3 \(\frac{-i+j}{8}\)
4 \(\frac{-i+j}{2 \sqrt{2}}\)
Rotational Motion

269555 A proton of velocity \((3 \hat{i}+2 \hat{j}) \mathrm{ms}^{-1}\) enters a field of magnetic induction \((2 \hat{i}+3 \hat{k}) T\). The accel eration produced in the proton in (specific charge of proton \(=0.96 \times 10^{8} \mathrm{Ckg}^{-1}\) ) \(\square F=q(\overrightarrow{\mathrm{v}} \times \vec{B}) \square\)

1 \(0.96 \times 10^{8}(6 \hat{i}+9 \hat{j}+4 \hat{k})\)
2 \(0.96 \times 10^{8}(6 \hat{i}-9 \hat{j}-4 \hat{k})\)
3 \(0.96 \times 10^{8}(\hat{i}-\hat{j}-\hat{k})\)
4 \(0.96 \times 10^{8}(5 \hat{i}-9 \hat{j}-4 \hat{k})\)