268937
Three vectors satisfy the relation \(\vec{A} \cdot \vec{B}=0\) and \(\vec{A} \cdot \vec{C}=0\), then \(\vec{A}\) is parallel to
1 \(\vec{C}\)
2 \(\vec{B}\)
3 \(\vec{B} \times \vec{C}\)
4 \(\vec{B} \cdot \vec{C}\)
Explanation:
VECTORS
268938
Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{\tau}\) be the torque of this foce about the origin. Then (AIEEE-2003)
1 \(\vec{r} \cdot \vec{F}=0\) and \(\vec{r} \cdot \vec{\tau} \neq 0\)
2 \(\vec{r} \cdot \vec{\tau} \neq 0\) and \(\vec{F} \cdot \vec{\tau}=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
VECTORS
268937
Three vectors satisfy the relation \(\vec{A} \cdot \vec{B}=0\) and \(\vec{A} \cdot \vec{C}=0\), then \(\vec{A}\) is parallel to
1 \(\vec{C}\)
2 \(\vec{B}\)
3 \(\vec{B} \times \vec{C}\)
4 \(\vec{B} \cdot \vec{C}\)
Explanation:
VECTORS
268938
Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{\tau}\) be the torque of this foce about the origin. Then (AIEEE-2003)
1 \(\vec{r} \cdot \vec{F}=0\) and \(\vec{r} \cdot \vec{\tau} \neq 0\)
2 \(\vec{r} \cdot \vec{\tau} \neq 0\) and \(\vec{F} \cdot \vec{\tau}=0\)
268937
Three vectors satisfy the relation \(\vec{A} \cdot \vec{B}=0\) and \(\vec{A} \cdot \vec{C}=0\), then \(\vec{A}\) is parallel to
1 \(\vec{C}\)
2 \(\vec{B}\)
3 \(\vec{B} \times \vec{C}\)
4 \(\vec{B} \cdot \vec{C}\)
Explanation:
VECTORS
268938
Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{\tau}\) be the torque of this foce about the origin. Then (AIEEE-2003)
1 \(\vec{r} \cdot \vec{F}=0\) and \(\vec{r} \cdot \vec{\tau} \neq 0\)
2 \(\vec{r} \cdot \vec{\tau} \neq 0\) and \(\vec{F} \cdot \vec{\tau}=0\)
268937
Three vectors satisfy the relation \(\vec{A} \cdot \vec{B}=0\) and \(\vec{A} \cdot \vec{C}=0\), then \(\vec{A}\) is parallel to
1 \(\vec{C}\)
2 \(\vec{B}\)
3 \(\vec{B} \times \vec{C}\)
4 \(\vec{B} \cdot \vec{C}\)
Explanation:
VECTORS
268938
Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{\tau}\) be the torque of this foce about the origin. Then (AIEEE-2003)
1 \(\vec{r} \cdot \vec{F}=0\) and \(\vec{r} \cdot \vec{\tau} \neq 0\)
2 \(\vec{r} \cdot \vec{\tau} \neq 0\) and \(\vec{F} \cdot \vec{\tau}=0\)