CELLS,KIRCHOFF'SLAW'S, WHEAT STONE BRIDGE
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)