CELLS,KIRCHOFF'SLAW'S, WHEAT STONE BRIDGE
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)
Current Electricity

268533 In Wheat stone's bridge shown in the adjoining figure galvanometer gives no deflection on pressing the key, the balance condition for the bridgeis :

1 \(\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}\)
2 \(\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}\)
3 \(\frac{R_{1}}{R_{1}+R_{2}}=\frac{C_{1}}{C_{1}-C_{2}}\)
4 \(\frac{R_{1}}{R_{1}-R_{2}}=\frac{C_{1}}{C_{1}+C_{2}}\)
Current Electricity

268534 In the steady state, the energy stored in the capacitoris :

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(\frac{1}{2} C\left(\frac{E_{1} R_{1}+E_{1} R_{2}}{r_{1}+r_{2}+R_{1}+R_{2}}\right)^{2}\)
4 \(\frac{1}{2} C\left(E_{2}+\frac{E_{1} R_{1}}{r_{1}+R_{1}+R_{2}}\right)^{2}\)
Current Electricity

268535 A part of circuit in steady state along with the currents flowing in the branches, the value of resistances is shown in figure. Calculate the energy stored in the capacitor.

1 \(8 \times 10^{-1} \mathrm{~J}\)
2 \(8 \times 10^{-2} \mathrm{~J}\)
3 \(8 \times 10^{-3} \mathrm{~J}\)
4 \(8 \times 10^{-4} \mathrm{~J}\)
Current Electricity

268536 Equivalent resistance across\(A\) and \(B\) in the given circuit if \(r=10_{\Omega}, R=20 \Omega\) is

1 \(7_{\Omega}\)
2 \(14 \Omega\)
3 \(35 \Omega\)
4 \(20 / 3 \Omega\)