198136
एक बन्द ऑर्गन पाइप तथा एक खुला ऑर्गन पाइप समान मूल आवृत्ति के लिए समस्वरित किये गये हैं। इनकी लम्बाइयों का अनुपात होगा
1 \(1:2\)
2 \(2:1\)
3 \(2:3\)
4 \(4:3\)
Explanation:
माना \({l_1}\) व \({l_2}\) क्रमश: बन्द एवं खुले पाइप की लम्बाईयाँ हैं (अन्त्य संशोधन को नगण्य मानने पर) \({l_1} = \frac{{{\lambda _1}}}{4} \Rightarrow {\lambda _1} = 4{l_1}\) एवं \({l_2} = \frac{{{\lambda _2}}}{2} \Rightarrow {\lambda _2} = 2{l_2}\) दिया है \({n_1} = {n_2}\), \(\frac{v}{{{\lambda _1}}} = \frac{v}{{{\lambda _2}}}\) \(\Rightarrow \frac{v}{{4{l_1}}} = \frac{v}{{2{l_2}}} = \frac{{{l_1}}}{{{l_2}}} = \frac{1}{2}\)
15. WAVES (HM)
198137
एक खुला पाइप \(500 Hz\) आवृृत्ति के स्वरित्र-द्विभुज के साथ अनुनाद की अवस्था में है। यह पाया गया कि दो क्रमागत निस्पंद खुले सिरे से \(16 cm\) व \(46 cm\) पर बनते हैं। वायु-स्तम्भ में ध्वनि की चाल ..... \(m/s\) होगी
1 \(230\)
2 \(300\)
3 \(320\)
4 \(360\)
Explanation:
दो क्रमागत निस्पंदों के बीच की दूरी \( = \frac{\lambda }{2} = 46 - 16 = 30\) \( \Rightarrow \lambda = 60\,cm = 0.6m\) \(\therefore \) \(v = n\lambda = 500 \times 0.6 = 300\)\(m/s\).
15. WAVES (HM)
198138
एक बन्द पाइप की मूल आवृत्ति ज्ञात करें यदि वायु स्तम्भ की लम्बाई \(42 m\) हो (वायु में ध्वनि की चाल \(= 332\, m/sec\) है) .... \(Hz\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
15. WAVES (HM)
198136
एक बन्द ऑर्गन पाइप तथा एक खुला ऑर्गन पाइप समान मूल आवृत्ति के लिए समस्वरित किये गये हैं। इनकी लम्बाइयों का अनुपात होगा
1 \(1:2\)
2 \(2:1\)
3 \(2:3\)
4 \(4:3\)
Explanation:
माना \({l_1}\) व \({l_2}\) क्रमश: बन्द एवं खुले पाइप की लम्बाईयाँ हैं (अन्त्य संशोधन को नगण्य मानने पर) \({l_1} = \frac{{{\lambda _1}}}{4} \Rightarrow {\lambda _1} = 4{l_1}\) एवं \({l_2} = \frac{{{\lambda _2}}}{2} \Rightarrow {\lambda _2} = 2{l_2}\) दिया है \({n_1} = {n_2}\), \(\frac{v}{{{\lambda _1}}} = \frac{v}{{{\lambda _2}}}\) \(\Rightarrow \frac{v}{{4{l_1}}} = \frac{v}{{2{l_2}}} = \frac{{{l_1}}}{{{l_2}}} = \frac{1}{2}\)
15. WAVES (HM)
198137
एक खुला पाइप \(500 Hz\) आवृृत्ति के स्वरित्र-द्विभुज के साथ अनुनाद की अवस्था में है। यह पाया गया कि दो क्रमागत निस्पंद खुले सिरे से \(16 cm\) व \(46 cm\) पर बनते हैं। वायु-स्तम्भ में ध्वनि की चाल ..... \(m/s\) होगी
1 \(230\)
2 \(300\)
3 \(320\)
4 \(360\)
Explanation:
दो क्रमागत निस्पंदों के बीच की दूरी \( = \frac{\lambda }{2} = 46 - 16 = 30\) \( \Rightarrow \lambda = 60\,cm = 0.6m\) \(\therefore \) \(v = n\lambda = 500 \times 0.6 = 300\)\(m/s\).
15. WAVES (HM)
198138
एक बन्द पाइप की मूल आवृत्ति ज्ञात करें यदि वायु स्तम्भ की लम्बाई \(42 m\) हो (वायु में ध्वनि की चाल \(= 332\, m/sec\) है) .... \(Hz\)
198136
एक बन्द ऑर्गन पाइप तथा एक खुला ऑर्गन पाइप समान मूल आवृत्ति के लिए समस्वरित किये गये हैं। इनकी लम्बाइयों का अनुपात होगा
1 \(1:2\)
2 \(2:1\)
3 \(2:3\)
4 \(4:3\)
Explanation:
माना \({l_1}\) व \({l_2}\) क्रमश: बन्द एवं खुले पाइप की लम्बाईयाँ हैं (अन्त्य संशोधन को नगण्य मानने पर) \({l_1} = \frac{{{\lambda _1}}}{4} \Rightarrow {\lambda _1} = 4{l_1}\) एवं \({l_2} = \frac{{{\lambda _2}}}{2} \Rightarrow {\lambda _2} = 2{l_2}\) दिया है \({n_1} = {n_2}\), \(\frac{v}{{{\lambda _1}}} = \frac{v}{{{\lambda _2}}}\) \(\Rightarrow \frac{v}{{4{l_1}}} = \frac{v}{{2{l_2}}} = \frac{{{l_1}}}{{{l_2}}} = \frac{1}{2}\)
15. WAVES (HM)
198137
एक खुला पाइप \(500 Hz\) आवृृत्ति के स्वरित्र-द्विभुज के साथ अनुनाद की अवस्था में है। यह पाया गया कि दो क्रमागत निस्पंद खुले सिरे से \(16 cm\) व \(46 cm\) पर बनते हैं। वायु-स्तम्भ में ध्वनि की चाल ..... \(m/s\) होगी
1 \(230\)
2 \(300\)
3 \(320\)
4 \(360\)
Explanation:
दो क्रमागत निस्पंदों के बीच की दूरी \( = \frac{\lambda }{2} = 46 - 16 = 30\) \( \Rightarrow \lambda = 60\,cm = 0.6m\) \(\therefore \) \(v = n\lambda = 500 \times 0.6 = 300\)\(m/s\).
15. WAVES (HM)
198138
एक बन्द पाइप की मूल आवृत्ति ज्ञात करें यदि वायु स्तम्भ की लम्बाई \(42 m\) हो (वायु में ध्वनि की चाल \(= 332\, m/sec\) है) .... \(Hz\)
198136
एक बन्द ऑर्गन पाइप तथा एक खुला ऑर्गन पाइप समान मूल आवृत्ति के लिए समस्वरित किये गये हैं। इनकी लम्बाइयों का अनुपात होगा
1 \(1:2\)
2 \(2:1\)
3 \(2:3\)
4 \(4:3\)
Explanation:
माना \({l_1}\) व \({l_2}\) क्रमश: बन्द एवं खुले पाइप की लम्बाईयाँ हैं (अन्त्य संशोधन को नगण्य मानने पर) \({l_1} = \frac{{{\lambda _1}}}{4} \Rightarrow {\lambda _1} = 4{l_1}\) एवं \({l_2} = \frac{{{\lambda _2}}}{2} \Rightarrow {\lambda _2} = 2{l_2}\) दिया है \({n_1} = {n_2}\), \(\frac{v}{{{\lambda _1}}} = \frac{v}{{{\lambda _2}}}\) \(\Rightarrow \frac{v}{{4{l_1}}} = \frac{v}{{2{l_2}}} = \frac{{{l_1}}}{{{l_2}}} = \frac{1}{2}\)
15. WAVES (HM)
198137
एक खुला पाइप \(500 Hz\) आवृृत्ति के स्वरित्र-द्विभुज के साथ अनुनाद की अवस्था में है। यह पाया गया कि दो क्रमागत निस्पंद खुले सिरे से \(16 cm\) व \(46 cm\) पर बनते हैं। वायु-स्तम्भ में ध्वनि की चाल ..... \(m/s\) होगी
1 \(230\)
2 \(300\)
3 \(320\)
4 \(360\)
Explanation:
दो क्रमागत निस्पंदों के बीच की दूरी \( = \frac{\lambda }{2} = 46 - 16 = 30\) \( \Rightarrow \lambda = 60\,cm = 0.6m\) \(\therefore \) \(v = n\lambda = 500 \times 0.6 = 300\)\(m/s\).
15. WAVES (HM)
198138
एक बन्द पाइप की मूल आवृत्ति ज्ञात करें यदि वायु स्तम्भ की लम्बाई \(42 m\) हो (वायु में ध्वनि की चाल \(= 332\, m/sec\) है) .... \(Hz\)